
400

International Journal of Advance and Applied Research
www.ijaar.co.in

ISSN – 2347-7075 Impact Factor – 7.328
Peer Reviewed Bi-Monthly

 Vol.11 No.1 September – October 2023

Cloud-Based Testing Frameworks For Distributed Systems

Sumathi Rajkumar

Assistant Professor,

Department of Computer Science,

Thakur Ramnarayan College of Arts and Commerce, Mumbai, Maharashtra, India

Corresponding Author - Sumathi Rajkumar

DOI - 10.5281/zenodo.10947428

Abstract:

The purpose of this work is to introduce the framework known as Cloud Testing,

which is a solution that allows for the execution of a test suite to be parallelized across a

distributed cloud foundation. When compared to more conventional approaches, the use

of a cloud as a runtime environment for automated software testing offers a solution that

is both more efficient and effective in terms of the investigation of variety and

heterogeneity for testing coverage. With the help of this study, we want to assess our

solution in terms of the performance benefits that were accomplished through the use of

the framework. This evaluation will demonstrate that it is feasible to enhance the

software testing process while incurring very little configuration overhead and minimal

expenses.

Keywords: Software Testing, Cloud Computing

Introduction:

If you want your software testing

process to be successful, it has to be

carried out swiftly and automatically.

There are solutions that have been

around for a long time [2] that are

designed to automate the process of

software testing. Additionally, there are

other solutions that are primarily geared

at accelerating the process by spreading

the execution of a test suit among a

group of processors [4] [3]. In the same

vein, there are also efforts being made to

investigate the properties of distributed

computing platforms, such as grids, as

well as their broad parallelism and great

variability of settings, with the goal of

minimising the impact of the

development environment on the

outcomes of tests [5]. On the other hand,

cloud computing has just lately been

used by new research as a platform for

testing software on a big scale. "6" and

"7"

When compared to more

conventional approaches, the use of

cloud computing platforms for the

purpose of conducting software testing

may result in considerable

improvements in terms of both the

efficiency and efficacy of testing

capabilities [15]. This assertion is

http://www.ijaar.co.in/

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

401

supported by a number of aspects,

including the reduction of costs

associated with deployment,

maintenance, and licencing

environments; the flexibility to acquire

and install customised test environments

on demand; and the capacity to scale in a

fast and cost-effective manner [14].

On the other hand, the process of

development and testing in the cloud

often requires a large amount of work in

the setup, distribution, and execution of

tests [6]. We offer a framework that we

term CloudTesting in order to make it

easier to investigate different cloud

computing platforms and settings for the

purpose of software testing. An

abstraction solution that may facilitate

its adoption is the fact that the tool does

not require any source code modification

in order to execute software tests in the

cloud. This is one of the ways in which

our solution enables parallel execution

of automated software tests in

heterogeneous environments, thereby

reducing the amount of time spent

during the testing process.

In order to assess our solution,

we carried out a series of experiments

using the resources that were made

available to us by Amazon EC2. These

experiments were compared to the

execution of the identical tests that were

carried out locally. utilising the cloud

infrastructure results in considerable

improvements in execution time, with

very little setup overhead and extra

expense, according to the quantitative

study that was done utilising the cloud

infrastructure.

The Cloud Testing Frame Work:

The number of test cases that are

often included in big software projects is

typically much higher than average [5].

Because these tests often need a

significant amount of time to execute,

the usage of agile development

processes that primarily depend on

automated testing, such as Extreme

Programming [8], is made more difficult

at times. A huge parallelization of the

execution of the tests is the only method

to reduce the amount of time spent on

the testing process [9]. This is because

each test requires a certain amount of

time to run, and the amount of time

spent testing might vary depending on

the size and complexity of the

programme.

The Cloud Testing Framework

makes this process more efficient by

encapsulating all of the complexity

required in the parallel execution of test

cases utilising on-demand computing

resources. This is accomplished without

the need for any modifications to be

made to the source code of the tests in

order to make use of the framework.

When it is chosen to distribute

and parallelize the tests, the outcome is a

considerable decrease in the amount of

time necessary to run a big test set. This,

in turn, reduces the amount of time spent

discovering and resolving problems,

which has a major influence on the

overall cost of development.

Furthermore, the framework improves

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

402

the reliability of the test findings by

using settings that are diverse and free of

contamination while the tests are being

performed. This makes it easier to

uncover faults that would otherwise

remain hidden until the software

production stage.

Initially, the framework is mostly

concerned with software that is written

using Java. By conducting a reflection

on the local classes that contain the tests

and scheduling the execution of each test

on a separate computer in the cloud, it

distributes the execution of a collection

of unit tests. This is accomplished by

distributing the execution of the tests.

An implementation of the Round-Robin

algorithm [10] is used to ensure that the

load is distributed evenly among all of

the computers that are available. This

ensures that each and every request is

spread uniformly over all of the

computers that are a part of the test

infrastructure.

Fig. 1 displays the architectural

components of the CloudTesting

framework, which are comprised of the

configuration, reflection, distribution,

connection, log, and main components.

This is a very essential element of the

proposed framework.

Fig. 1. Cloud Testing components

Additionally, the configuration

component provides assistance in the

definition of information pertaining to

load balancing, hosts, and pathways. For

example, it may be used to define the

local storage space for test results, the

libraries that need to be sent to the cloud

in order to ensure that the test is

executed correctly, and the permissions

for accessing files on the cloud provider.

In addition to that, it contains the

settings for the load balancer as well as

the list of machines that are accessible

for test execution at any given specific

time. It is the responsibility of the

Reflection component to extract the test

cases in order to provide the distribution

component with information on the

examination procedures that should be

carried out in the cloud.

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

403

Fig. 2. Cloud Testing intermediating the

distributed execution of automated tests

on different parallel infrastructures

An example of the distribution

component that is being used to facilitate

the execution of test suites across a

parallel infrastructure can be seen in

Figure 2. It is necessary to expand the

framework in order to include certain

plugins in order to make it compatible

with a particular integrated development

environment (IDE) and parallel

infrastructure. Plugins for the Eclipse

integrated development environment

(IDE) and the Amazon Web Services

architecture are provided by the present

implementation.

There is an interface on the client

side that is provided by the connection

component, which allows for

communication with the cloud provider.

A service that handles the execution of

each test and transmits the results of the

tests back to the client in real time is

provided by this component, which is

located on the cloud site. In the process,

the log component is responsible for

recording events that occur.

Related Work:

It has been noticed that over the

course of the last few years, a number of

well-founded studies have been

generated that approach methods and

means to automate and speed the process

of software testing [2, 4], [3]. Despite

this, the amount of labour required for

software testing increases in proportion

to the size and complexity of the

computer systems. Since this

methodology takes advantage of the

characteristics of wide parallelism and

extensive heterogeneity of

environments, numerous automatic

distributed software testing systems or

large scale systems have been proposed

in recent years. This is because the goal

of this methodology is to limit the

effects of the development environment

on the test results [17]. The following

discussion will focus on a few research

that are relevant to our solution.

An open-source solution for

automatically performing unit tests

inside the grid is presented by the

GridUnit tool [17], which studies the

usage of computational grids as a testing

environment and delivers the solution.

The solution is an extension of the JUnit

framework [2], which enables the

execution of a JUnit test suite to be

distributed throughout the grid without

the need for any modifications to be

made to the source code. Grid Unit has

five primary qualities in its design. The

distribution is both transparent and

automated; each JUnit test is considered

to be an independent job, and the

scheduling of the execution of the task in

the grid is carried out without any

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

404

involvement from a human

administrator. For the purpose of

avoiding contamination, each test is

executed by using the virtualization

capabilities provided by the grid. This

ensures that the results of the A1 test do

not influence the results of the A2 test.

In order to test load distribution, the tool

has a Grid Scheduler, which is

responsible for managing load

distribution. In order to ensure the

integrity of the test suite, each JUnit test

is executed as a separate job, as was

indicated before. Grid Unit generates a

new instance of the Test class for each

new test, then immediately destroys the

object after making calls to the set Up (),

test Method (), and tear Down ()

methods; As a way of creating the

execution and monitoring of tests in a

centralised manner, the GridTestRunner

and Grid Test Listener interfaces provide

the ability to govern the execution of

tests.

In terms of the infrastructure and the

abstraction of complications, our

approach, which is called Cloud Testing,

is very different from GridUnit.

GridUnit makes use of computing grids,

and Cloud Testing allows for the use of

several distributed execution platforms

in order to carry out automated testing of

an application in a number of runtime

settings, including the cloud. Using the

cloud has several benefits, including the

capacity to automatically resize

virtualized hardware resources, the

provision of security via virtualization,

the elimination of concerns over

workflow, the ease of administration, the

usability, and the flexibility of the

business model used.

A solution is proposed in the D-

Cloud study [9] for testing parallel or

large-scale distributed systems that need

features of highly reliable systems. The

method focuses on fault tolerance testing

at the hardware level. A controller node

is responsible for managing all of the

hosted operating systems, and a frontend

is responsible for controlling hardware

and software configurations as well as

test scenarios. The research presents the

infrastructure of cloud computing for

software testing, which is comprised of

multiple nodes of virtual machines that

run operating systems hosted with fault

injection. D-Cloud's conceptual

architecture draws attention to the

following characteristics among its

components:

 A virtual machine that is

equipped with fault injection is

known as the FaultVM, and it is

based on QEMU, which is the

hypervisor software.

 Management of computational

resources via the usage of

Eucalyptus - The Eucalyptus

software is used in order to

handle the vast quantity of

resources that are utilised in the

cloud management process. The

tester is relieved of the task of

managing the allocation of

computer resources as a result of

this procedure being carried out

automatically;

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

405

 Testing and configuration of the

system that is automated - the

tool is able to automate the

process of testing and

configuration of the system,

including the injection of faults,

depending on scenarios that are

provided by a tester;

 The preparation of the test

scenarios is accomplished by

means of a file that is written in

XML. By supplying numerous

scenario files, it is possible to test

various systems simultaneously.

When presented with the concept

of Cloud Testing, the D-Cloud work

takes a different approach to the

execution of automated software testing

and approaches the environment in

which it is carried out. Essentially, there

is a divergence in the path that

automated software testing is taking. On

the other hand, the second study leads to

the execution of a series of unit tests that

make use of the JUnit framework. The

first project directs its tests for fault

tolerance at the hardware level.

Additionally, D-Cloud was developed to

function just for the infrastructure of

cloud computing, neglecting other

platforms and modes of execution in the

process. Due to the fact that it is a

framework, Cloud Testing may be

modified to meet certain requirements.

Experimental Results:

One of the capabilities that may

be added to the Cloud Testing

framework is the ability to collect

resources from a variety of execution

platforms and to utilise it in a variety of

integrated development environments

(IDE). To conduct this research,

however, we created an instantiation of

the framework for the Eclipse integrated

development environment (IDE) and the

cloud provider Amazon Web Services

(AWS).

For the purpose of carrying out

the experiments, we developed a

collection of 1800 tests, each of which

had an average processing time that was

previously known when it was carried

out on a local computer. Our objective

was to draw a comparison with the

findings that were acquired via the use

of the framework.

The experiments are broken up

into two different scenarios: (1) the first

scenario involves the test suite being run

45 times on a local system, and (2) the

second situation involves the test set

being disseminated 45 times using

resources made available by the cloud

provider.

For the purpose of eliminating

outliers, we made use of Chauvenet's

criteria [13] when conducting the study.

Next, determine the average execution

time, the standard deviation, and the

greatest and worst execution times.

Finally, identify the average execution

time. This information allows the

calculation of the speedup (SP = T1/Tp

where T1 is the execution time of the

sequential programme and Tp is the

execution time of the same programme

running in parallel) and the efficiency of

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

406

the parallel execution (EF = Sp / Np

where Sp is the speedup achieved and

Np is the number of cloud machines

used to run the tests in parallel). We then

proceeded to compute the confidence

intervals for 95% and 99% with

reference to [12].

Scenario 01:

The tests that were carried out

locally adhered to a stringent protocol on

the use of the apparatus during the

duration of the test. For the purpose of

avoiding abnormal outcomes and

obtaining true results, we used a system

that was only devoted to the testing

process. We restarted the system after

each test was completed in order to clean

the data that was stored in the random

access memory (RAM) and the cache of

the processor. The computer was

equipped with a 32-bit Linux operating

system, a 2 GHz Intel Core 2 Duo

processor, and 4 gigabytes of random

access memory (RAM).

For the purpose of capturing the

actual runtime of the test, we used the

integrated development environment

Eclipse, which is equipped with the

JUnit plugin PDE. This plugin maintains

all software that is needed for unit

testing and includes a default profiler.

Every single unit test was able to

obtain an average runtime that was very

close to one second in this circumstance.

It took an average of thirty minutes to

complete a single run of the test set,

which consisted of more than one

thousand and eight hundred tests. It took

a total of 22 minutes and 54 seconds to

complete all 45 rounds. With a standard

deviation of 1.47% (0:00:27), the

average execution time was 0:30:33,

while the best and worst execution times

were 0:29:58 and 0:31:09 respectively.

When using a confidence interval with a

95% level of certainty, the lower limit

and higher limit were 00:30:25 to

00:30:41. When using a confidence

interval with a 99% level of certainty,

the lower limit and upper limit were

00:30:23 respectively. These statistics

serve as a foundation for doing an

analysis of the speedup in which the

CloudTesting framework is used.

Scenario 02:

In order to determine how long it

takes for the tests to run in the cloud, we

need to take into account a number of

aspects, including network latency and

volatility. Therefore, in order to ensure

theoretically identical bandwidth

circumstances for all of the experiments,

we decided to establish a similar time

scale for the testing. During the time

span between 00:00 and 04:00, all of the

tests were carried out. This time slice

was chosen since it was chosen to mimic

the minimal network utilisation that

occurred in the laboratory. Because of

the extensive quantity of testing that was

required, the tests were not carried out

on a single day; rather, they were carried

out on several days in accordance with

the policy that is detailed below.

Using three distinct Amazon

instance types—micro, small, and

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

407

medium—the 45 cycles were repeated

three times until they were completed.

When carrying out the three different

subsets of trials, we used a total of 18

instances of each kind. This was

accomplished by using the Eclipse

integrated development environment in

conjunction with the TPTP plugin

profiler in order to record the real

runtime of the test. For the download,

we used a network that had a nominal

capacity of 15 Mbps, and for the upload,

we utilised 1 Mbps. A number of

configuration settings were applied to

the cloud machines before the tests were

carried out. These settings included the

following: (1) the creation of the log and

lib directories for the purpose of storing

logs and libraries, respectively; (2) the

distribution of the JUnit and

CloudTesting libraries to the lib

directory; and (3) the activation of the

CloudTesting remote service.

Fig. 3. Execution time for the Scenario 2

– Micro instances

Discussion:

Before deciding if a given

speedup is a favourable or bad thing,

there are a few things that need to be

taken into consideration. Since we

employed 18 machines to carry out the

tests, one would anticipate that the

results would be 18 times quicker than if

they had been carried out by a single

machine. However, it is essential to keep

in mind that in order to parallelize the

execution by using cloud computers, we

are required to upload the code that will

be run remotely using cloud computing.

It is also possible that the cost of

spreading packets over the network will

be high, depending on the scale of the

project. The capacity of the computers to

process data and the capacity to input

and output data in the cloud are two

additional factors that are intimately tied

to one another. Last but not least, there

is also the connection with the

virtualized server, which is important to

consider since the performance will

often be determined by the quantity of

resources that are accessible on the

actual server.

Despite the fact that the micro

instances were not designed to handle

big load requests in a short amount of

time, we were able to see that they were

able to accomplish a significant increase

in speed throughout the testing. When it

comes to this particular circumstance,

the medium examples are more suitable.

In the best case scenario, the

trials that were carried out with the

micro instances demonstrated a speedup

of 8.55 times and a parallel efficiency of

0.48. In the worst case scenario, the

speedup for the micro instances was 2.61

times, and the efficiency was 0.14.

Additionally, it demonstrated a speedup

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

408

of 2.89 percent on average, which led to

a parallel efficiency of 0.16 percent.

A striking regularity was seen in

the tests that were carried out using

instances of type tiny. These tests

demonstrated a speedup of 5.71 times

and an efficiency of 0.32 in the best case

scenario, and 5.70 and 0.31 in the worst

case scenario. In general, the outcomes

are almost identical to what would be

expected in the best-case scenario.

The studies that were carried out with

the medium instances achieved a

speedup of 9.48 times and a parallel

efficiency of 0.53 in the best case

scenario, while in the worst case

scenario, the speedup for the medium

instances was 8.72 times and the parallel

efficiency was 0.48. We were able to get

a speedup of 7.83 percent on average

and a parallel efficiency of 0.43 percent.

A summary of these findings may be

seen in Figure 4.

Fig.4. Comparison Speedup between

micro, small and medium instances

During several of our tests, we

made the interesting discovery that we

were able to get greater speedups with

the micro instances, which were less

expensive, than we were with the tiny

instances.

At first, this result came as a

surprise; however, as was noted before,

micro instances have the ability to

temporarily employ up to two ECUs,

which means that they have double the

computational capability of a small

instance. Micro instances, on the other

hand, are considered to be much slower

than tiny instances on average.

According to what was anticipated, the

medium instances that were purchased at

a greater price yielded the greatest

outcomes. This outcome was anticipated

as a consequence of the hardware

arrangement, as well as the superior

input and output rates in comparison to

the other examples that were examined.

Conclusions:

The results of the experiments

indicate that there are significant

performance gains associated with the

distribution of the execution of software

tests. These gains are achieved without a

significant increase in the costs involved

in assembling the infrastructure. As a

result, the process of using cloud

infrastructures as a platform for

automated software testing is made

easier.

By performing parallel automated

software tests in diverse settings via an

abstraction layer for users, the Cloud

Testing framework makes it easier to

execute automatic tests in dispersed

environments. This results in

improvements in speed, reliability, and

the ease with which configurations may

be made.

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

409

References:

[1]. Smith, A. and Jones, B. (1999).

On the complexity of computing.

In Advances in Computer Science,

pages 555-566. Publishing Press.

[2]. Gamma, E. and Beck, K. (1999).

JUnit: A cook's tour. Java Report, 4

(5) :27-38.

[3]. Hughes, D. and Greenwood, G.

(2004). A Framework for Testing

Distributed Systems, In

Proceedings of the 4th IEEE

International Conference on Peer-

to-Peer computing.

[4]. Kapfhammer, G., M. (2001).

Automatically and transparently

Distributing the Execution of

Regression Test Suites. In

Proceedings of the 18th

International Conference on

Testing Computer Software.

[5]. Duarte, A. et. al. (2005).

GRIDUNIT: software testing on

the grid, Proceedings of the 28th

international conference on

Software engineering. New York,

USA, p. 779-782.

[6]. Hanawa, T. et al. (2010). Large-

Scale Software Testing

Environment Using Cloud

Computing Technology for

Dependable Parallel and

Distributed Systems, Software

Testing, Verification, and

Validation Workshops (ICSTW),

2010 Third International

Conference.

[7]. Oriol, M. and Ullah, F. (2010).

YETI on the Cloud. Software

Testing, Verification, and

Validation Workshops (ICSTW)

Third International Conference

2010.

[8]. Wu, X. and Sun, J. (2010). The

Study on an Intelligent General-

Purpose Automated Software

Testing Suite, Intelligent

Computation Technology and

Automation (ICICTA)

International Conference 2010.

[9]. Banzai, and Takayuki Koizumi,

Hitoshi (2010). D-Cloud: Design

of a Software Testing Environment

for Reliable Distributed Systems

Using Cloud Computing

Technology Cluster, Cloud and

Grid Computing (CCGrid), 10th

IEEE / ACM International

Conference.

[10]. Ramabhadran, S. and Pasquale, J.

(2003). "Stratified round robin: A

low complexity packet scheduler

with bandwidth fairness and

bounded delay," Proc. of

SIGCOMM.

[11]. 'AmazonEC2 (2012). "Amazon

Elastic Compute Cloud (Amazon

EC2),"

http://aws.amazon.com/pt/ec2/insta

nce-types/,June.

[12]. Dillard, GM (1997). "Confidence

intervals for power Estimates,"

Signals, Systems & Computers,

1997. Conference Record of the

Thirty- First Asilomar Conference.

[13]. Pop, S.; Ciascai, I. and Pitica, D.

(2010), "Statistical analysis of

experimental data Obtained from

http://aws.amazon.com/pt/ec2/instance-types/%2CJune
http://aws.amazon.com/pt/ec2/instance-types/%2CJune

IJAAR Vol.11 No.1 ISSN – 2347-7075

Sumathi Rajkumar

410

the optical pendulum," Design and

Technology in Electronic

Packaging (SIITME), 2010 IEEE

16th InternationalSymposium.

[14]. Grundy, J. et al. (2012), "Guest

Editors' Introduction: Software

Engineering for the Cloud,

"Software, IEEE, vol.29, no.2,

pp.26-29.

[15]. Riungu-Kalliosaari, L.; Taipale, O.

and Smolander, K. (2012).

"Testing in the Cloud: Exploring

the Practice," Software, IEEE,

vol.29, no.2, pp.46-51.

[16]. Andrade, Nazareno et al. (2003).

OurGrid: An Approach to Easily

Assemble Grids with Equitable

Resource Sharing. Job Scheduling

Strategies for Parallel Processing.

Lecture Notes in Computer

Science, Springer Berlin /

Heidelberg, pp. 61-86.

[17]. Duarte, A. et al.. Multi-

environment Software Testing on

the Grid. In: PADTAD ’06:

Proceedings of the 2006 workshop

on Parallel and distributed

systems: testing and debugging.

New York, NY, USA: ACM, 2006.

p. 61–68. ISBN 1-59593-414-6.

