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Abstract 

In this paper a new theorem established on the degree of approximation of function in the H ̈lder 

Metric by Matrix Cesaro - Summability method of its Fourier series. 
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Introduction 

The  degree of approximation of function belonging to the           (    )    ( ( )   ) and 

  (   ( )) using different summability method has determined by the several investigators of its Fourier 

series. 

Alexits (1928) determined  the degree of approximation of function of   (     )and  

       

Then ‖  ( )   ‖   ( ) {
              (     )
 

 (    )      
      (   )               

 

Chandra (1988), (1993) determined some results on degree of  approximation of functions in Holder 

Metric. In 2008 Singh and Mahajan (2008) studied error bound of periodic signals in the Holder metric. In 

2014 Vishnu Narayan Mishra and KejalKhatri extended the result of Singh and  Mahajan in 2008. In 2019 

Santosh Kumar Sinha ,U.K.Shrivastava established a new theorem in  Holder metric by using (N,Pn) (E,q) 

means . 

In the present work we established a new theorem on degree of approximation of function in the 

H ̈lder Metric by Matrix Cesaro - Summability method of its Fourier series by using our previous work 

(2015). 

2. Definition and notations 

Let f be 2  periodic function, integrable over (    ) in the sense of Lebesgue, then its Fourier series is 

given by  

 ( ) 
 

 
   ∑ (               )

 
           (2.1)                                                                                                           

Let    denote the Banach Space of all 2  - periodic continuous function defined on [ , − ] under sub-norm.  

For 0 ≤ α ≤1 and some positive constant k the function space    is given by the following  

   = {        | ( )   ( )|    |    |
  }                 (2.2)                                                                                                 

The space    is a Banach space with the norm‖ ‖  defined by  

‖ ‖   ‖ ‖     ,    (   )-    
    

                                                                     (2.3)                                                              

Where    ‖ ‖  | ( )|      
   

and    (   )  | ( )   ( )| |   |    ⁄     

We shall use the connection that       (   )     

The metric induced by norm in (2.3) on     is called the  H ̈lder metric .  

The degree of approximation   ( )of a function f:R R by trigonometric polynomial    of degree n is 

defined by  

  ( )  ‖    ‖     *|  ( )   ( )|    +Zygmund (12). 
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Let ∑   
 
    be the infinite series whose n

th
partial sum is given by    ∑     

 
    

Cesaro means (C,1) of sequence *  + is given by     
 

   
∑     
 
    If      , as      then sequence 

*  + or the infinite series ∑   
 
    is said to be summable by Cesaro means (C,1) to S. 

Let   (    ) be an infinite lower triangular matrix satisfying the conditions of regularity, i.e. 

∑ |    |
 
     , a finite constant . 

Matrix – Cesaro means T(C1) of the sequence *  +  is given by  

   ∑      

 

   

     ∑      

 

   

 

     
∑     

   

   

 

If      as n    , then the sequence *  +  or the infinite series ∑   
 
    is said to be summable by Matrix 

Cesaro means T(C1) method to S. 

Important particular cases of Matrix -Cesaro means are : 

(i) (N,Pn)C1 means ,when        
  

  
 , where    ∑     

 
    

(ii) (N,Pn)C1 means ,when        
    

  
 

(iii) (N,p,q)C1 means ,when        
      

  
 , where    ∑         

 
    

We write  

 ( )   (   )   (   )   ( ) 

 (   )  
 

  
∑

      
(     )

    (     )
 
 

    
 
 

 

   

 

 

3. Known Results 

Das G, GhoshTulika and Ray B K (1995) studied Degree of approximation of functions in the H ̈lder metric 

by (e,c) means. 

Theorem-1.      and       . Let     . Then  

‖  ( )   ‖   ( ){

    

     
    (      

 

 
)

 

    
    (
 

 
      )               

 

Mahapatra and Chandra (1982) studied for the H ̈lder continuous function f to obtain error bounds in Holder 

norm. 

Theorem-2. Let         and let    . Then for     . 

‖  
 
( )   ‖

 
  *( ) 

 (   )
 (    )

 
 + 

Again Prem Chandra (1988) generalize his results on Degree of approximation of functions in the H ̈lder 

metric. 

Theorem-3.Let         and Let     . Then 

‖  
 
( )   ‖

 
  *        + 

Theorem-4.Binod Prasad Dhakal (2010) determined the degree of approximation of certain function 

belonging to the       class by MatrixCesarosummability method. 

Theorem-5.We generalized above result in our previous work (2008). 

 Let       is 2π periodic function belonging to the  (   ( ))class, then its degree of approximation by 

Matrix  -Cesaro  Summability mean of Fourier series  is given by  

‖  ( )   ( )‖   ,(   )
   

 
   (

 

   
)- 

Provided  ( ) satisfies the following conditions : - 
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{∫ (
 | ( )|

 ( )
)

 

        

 
   

 

}

 
 

  (
 

   
) 

{∫ (
   | ( )|

 ( )
)

 

      
 

 
   

}

 
 

  {(   ) } 

 

4. Main Theorem  

In this paper we established a new theorem of  Matrix- Cesaro product summability method in the Holder 

metric . 

Theorem :-  For         and      then for     

‖  ( )   ‖   [(   )
    

 
 ] 

5. Lemmas 

Lemma –I          If   ( )defined in  (2.5) then for      and        we have 

 

|  ( )    ( )|   (|   |
 )          (5.1) 

 

|  ( )    ( )|   (| |
 )           (5.2) 

                    

Lemma –II                          For     
 

   
 and fact that 

 

    
 

 

  
for     

 

 
, 

              (   )   (   )                    (5.3) 

 

Proof :-     (   )   
 

  
∑

      

     

    (     )
 

 

    
 

 

 
    

      
 

  
∑       (     )
 
    

        .                         
 

 
/ 

 
   

  
∑      

 

   

 

 
   

  
 

  (   ) 

Lemma -III        For
 

   
     

    (   )   .
 

(   )  
/                              (5.4) 

                      

 

Proof : -          (   )    
 

  
∑

      

     

    (     )
 

 

    
 

 

 
    

                                   
  

  
∑

      

     

  

  
 
    , by Jordan’s  lemma 

 
 

   
∑

      
     

 

   

 

 
 

   
 (

 

   
) 
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  (
 

(   )  
) 

 

6. Proof of the main theorem : 

 

The n
th 

partial sum   ( ) of the Fourier series (2.1) is given by  

  ( )   ( )  
 

  
∫  ( )
 

 

   .  
 

 
/

   
 

 

                   (6.1)                                            

The (C, 1) transform i.e.   of    is given by  
 

   
∑ (  ( )   ( ))
 
    

 

 (   ) 
∫

 ( )

   
 

 

 

 
∑    .  

 

 
/      

    

  ( )   ( )  
 

 (   ) 
∫  ( )
 

 

    (   )
 

 

    
 

 

                            (6.2)                                     

      

The matrix means of the sequence *  + is given by  

∑    (  ( )   ( ))

 

   

 ∫  ( )
 

 

 

  
∑

 

(   )

    (   )
 
 

    
 
 

  

 

   

 

∑    (    ( )   ( ))

 

   

 ∫  ( )
 

 

 

  
∑

 

(     )

    (     )
 
 

    
 
 

  

 

   

 

                                             ( )   ( )  ∫  ( ) (   ) 
 

 
                                                 (6.3) 

                                                                    ∫  ( ) (   ) 
 

   
 

  ∫  ( ) (   ) 
 
 

   

  

                                                                               [∫  ∫  
 
 

   

 

   
 

]  ( ) (   )                          (6.4) 

                       

Now     ( )  |  ( )   ( )| 

and    (   )  |  ( )    ( )| 

                       =[∫  ∫  
 
 

   

 

   
 

] |  ( )    ( )|| (   )|   

                                 ,say                                                                                                 (6.5)                                               

 Again,             ∫ |  ( )    ( )|| (   )| 
 

   
 

  

 Using Lemma (3.1) and (3.2), we have  

  (   )∫    

 
   

 

  

  (   ) (
 

   
)
   

 

                                                            (   )
                                                          (6.6)                                  

Now  

                                                                 ∫ |  ( )    ( )|| (   )|  
 
 

   

 

Using Lemma (3.1) and (3.3), we have  

                                                                      (   )∫   .
 

  
/  

 
 

   

   .
 

   
/∫       

 
 

   

 

  (
 

   
) *
    

   
+
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  (
 

   
) [

 

   
]
   

 

                                                                   =   (   )                                                    (6.7)       

                                                   

Again                         ∫ |  ( )    ( )|| (   )| 
 

   
 

  

 

                                                                ,|   | (   )-                                                 (6.8)                                                                          

    ∫ |  ( )    ( )|| (   )|  
 

 
   

 

  |   | ∫ | (   )|  
 

 
   

 

  |   | ∫
 

(   )  
  

 

 
   

 

  |   | 
 

(   )
∫

 

  
  

 

 
   

 

  |   | 
 

(   )
[
 

  
]
 
   

 

 

  |   | 
 

(   )
 (   ) 

                                                                              |   |                             (6.9) 

Now       
  

 

   
 

  , where          

From (6.6) and (6.8) we get 

    [*(   )
  +  

 
 *|   | (   )+

 
 ] 

  [(   )   {|   | (   )
 
 }] 

                                                                     [(   )    
 

  |   | ]                           (6.10)                                                        

From (6.7) and (6.9) we get 

    [*(   )
  +  

 
 *|   | +

 
 ] 

                                                               [(   )    |   | ]                              (6.11)                                          

Now form (6.10) and (6.11) we get 

| ( )   ( )|   [(   )    
 
  |   | ]   [(   )    |   | ] 

                                                    [(   )    
 
  |   | ] 

and    , (   )-  
| ( )  ( )|

|   | 
       (   ) 

                               [(   )    
 

 ]                                                                           (6.12) 

Now  

‖ ‖   ,(   )
  -                                                                                                   (6.13)          

By using (6.12) and (6.13) we get 

‖  ( )   ‖   [(   )
    

 
 ] 

7. Corollary  and   Examples : 

Corollary: The case     in  the theorem , we can find  the following result : 
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Let     and        , then we get  

‖  ( )   ‖   ,(   )
  - 

Example 1: Let for real  ,  

 ( )  ∑
 

(     )   
 
        (      ). 

Then    , by Zygmund [12] 

 

Example 2: Let for real   and every positive number    . 

  ( )  ∑
 

 (
 
 
  )

 

   

   * (       )+ 

where (     ). 

Then     is    -periodic function also non –linear and      . 
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