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Abstract: 

Blur image restoration is a critical field in image processing, aiming to enhance the quality of degraded 

images by removing various types of blur. This paper reviews and compares several techniques used for blur 

restoration, from traditional signal-processing approaches to advanced machine learning-based methods. By 

understanding the strengths and weaknesses of each technique, this paper provides insights into the optimal 

application scenarios for these methods. The comparative analysis indicates a trend toward machine learning and 

deep learning approaches due to their flexibility and high-quality results. 
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Introduction: 

Image blur is a common issue in various 

fields, including photography, surveillance, and 

medical imaging. Blur can be caused by factors such 

as camera shake, object motion, defocus, and lens 

imperfections. Effective blur restoration techniques 

are essential to recover the original image's 

sharpness and detail. This paper aims to review and 

compare the leading blur restoration techniques, 

analyzing their respective advantages, 

disadvantages, and ideal use cases. 

Traditional Methods: 
i. Inverse Filtering: 

Inverse filtering is one of the earliest 

approaches to blur restoration, treating blurring as a 

convolution problem and attempting to reverse it 

with an inverse filter. While straightforward, this 

method is highly sensitive to noise, resulting in 

artifacts and degraded quality. It requires precise 

knowledge of the point spread function (PSF), 

limiting its practicality. 

Inverse filtering is a straightforward 

approach to deblurring. It assumes the blur in an 

image is the result of a convolution with a point 

spread function (PSF). In the spectral (frequency) 

domain, this convolution can be reversed by 

applying an inverse filter to recover the original 

image. The basic operation is outlined in Digital 

Image Processing by R. C. Gonzalez and R. E. 

Woods (2002), where the inverse filtering process 

can be represented as: 

 

F′ = 
 

 
 

 

ii. Wiener Filtering: 
Wiener filtering is an enhancement over 

inverse filtering, incorporating noise estimation to 

balance blur removal and noise reduction. This 

method is more robust but requires accurate 

estimations of both the PSF and the noise power 

spectrum. The technique can result in smoother 

images with reduced detail due to its noise-

compensating behavior. 

Wiener filtering extends inverse filtering by 

incorporating noise reduction. This method operates 

in the Fourier domain and balances blur removal 

and noise smoothing. It minimizes the Mean 

Squared Error (MSE), providing a better trade-off 

between deblurring and noise reduction [A. K. Jain, 

1989]. The Wiener filtering equation in the Fourier 

domain is given by: 
 

 

 
 

 

iii. Blind Deconvolution: 
Blind deconvolution aims to simultaneously 

estimate the PSF and the original image, allowing it 

to work in scenarios where the PSF is unknown or 

partially known. This flexibility comes at the cost of 

increased computational complexity. While blind 

deconvolution can deliver good results, it can 
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produce artifacts if the PSF is inaccurately 

estimated. 

Iterative Blind Deconvolution (IBD) is 

designed to estimate both the PSF and the original 

image simultaneously. It leverages the Fast Fourier 

Transform (FFT) and incorporates constraints like 

non-negativity and finite support. This iterative 

approach iteratively refines estimates of the PSF and 

the original image, providing flexibility in cases 

where the PSF is unknown [D. Kundur and D. 

Hatzinakos, 1996, 1998; G. R. Ayers and J. C. 

Dainty, 1988]. 

However, IBD suffers from several 

limitations, including difficulty in defining the 

inverse filter in regions with low values, spectral 

zeros in frequency domains, and uncertainty in 

uniqueness and convergence. Additionally, the 

initial estimates can influence the stability and 

quality of the final result [G. R. Ayers and J. C. 

Dainty, 1988]. 

iv. Richardson-Lucy Deconvolution: 
Richardson-Lucy deconvolution is an 

iterative technique based on maximum likelihood 

estimation. It is commonly used in fields like 

astronomy, where precise image restoration is 

crucial. Although effective with adequate iterations, 

this method requires careful stopping criteria to 

avoid over-sharpening, and it is sensitive to noise. 

The Richardson-Lucy algorithm is an 

iterative deconvolution method based on Bayes' 

theorem of conditional probability. It uses a 

probabilistic approach to iteratively estimate the 

original image from the blurred one, given a PSF. 

The algorithm requires an initial estimate of the 

blurring kernel's support size, which can introduce 

non-blind elements to the method [W. H. 

Richardson, 1972]. 

Despite its Bayesian foundation, Richardson-Lucy 

can suffer from convergence issues and requires 

careful tuning of the number of iterations to avoid 

over-sharpening. The need for an initial estimate of 

the blurring kernel can also affect the quality and 

accuracy of the restoration. 

v. Total Variation Regularization: 
Total variation regularization uses an 

optimization framework to restore images, 

incorporating a regularization term to minimize 

noise while preserving edges. This technique is 

effective for reducing noise, but it can lead to 

"staircase" artifacts in smooth gradient regions. It is 

computationally expensive due to its iterative 

nature. 

Regularization-based deblurring addresses 

the limitations of inverse filtering by incorporating 

prior information about noise or the original image. 

The regularization technique applies a regularization 

operator to minimize a cost function, reducing noise 

amplification while ensuring a more stable 

deblurring process [A. N. Tikhonov and V. Y. 

Arsenin, 1977; B. R. Hunt, 1973]. 

Regularization-based methods are generally more 

robust against noise and artifacts, but they require 

tuning of regularization parameters and can be 

computationally expensive. The constrained least-

squares or Tikhonov-Miller approach is a popular 

regularization technique, yielding solutions that 

balance restoration and noise smoothing. 

Machine Learning and Deep Learning 

Approaches: 
i. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) 

have revolutionized blur restoration, leveraging 

large datasets to learn complex blur patterns. CNN-

based techniques can adapt to various blur types and 

produce high-quality results. However, these 

approaches require substantial computational 

resources for training and are prone to overfitting 

without adequate data. 

Convolutional Neural Networks (CNNs) are 

among the most widely used deep learning models 

for processing data with grid-like patterns, such as 

images and audio spectrograms. Inspired by the 

organization of the animal visual cortex, CNNs have 

demonstrated exceptional success in various fields, 

including computer vision, speech processing, and 

biometric identification. This section reviews the 

fundamental aspects of CNNs, their advantages, and 

their diverse applications. 

a. Foundations of CNNs 
CNNs are a class of deep learning models 

that excel at automatically learning spatial 

hierarchies of features from input data. The design 

of CNNs draws inspiration from studies on animal 

vision, particularly the complex sequence of cells 

forming the visual cortex [Hubel DH, Wiesel TN, 

1962]. The ability to simulate this complex 

arrangement allows CNNs to extract and identify 

relevant patterns from 2D data structures like 

images [Goodfellow I, Bengio Y, Courville A, 

2016]. 

Key components of CNNs include 

convolution layers, pooling layers, and fully 

connected layers. Convolution layers apply 

specialized linear operations using small grids of 

parameters, known as kernels, across the input 

image. These kernels act as optimizable feature 

extractors, scanning the input data and capturing 

essential features. Pooling layers reduce the spatial 

dimensions, retaining important information while 

reducing computational complexity. Fully connected 

layers, typically found at the end of the network, 

map the extracted features to the final output, such 

as classification labels. 

b. Parameter Efficiency 

CNNs employ parameter sharing and sparse 

interactions, significantly reducing the number of 

parameters required for training compared to 



IJAAR    Vol.11 No.5                                  ISSN – 2347-7075 

Ashwini S. Waghmare, Suhas S. Satonkar 

155 

conventional fully connected (FC) networks 

[Goodfellow I, Bengio Y, Courville A, 2016]. This 

reduction in parameters simplifies the training 

process and speeds up computation. The sparse 

interactions mimic the behavior of visual cortex 

cells, which sense only small regions of a scene, 

allowing CNNs to focus on local correlations within 

the input data. 

c. Applications of CNNs 

CNNs have gained widespread adoption due to their 

versatility and effectiveness across various domains. 

 Computer Vision 

In computer vision, CNNs have 

revolutionized image classification, object detection, 

and segmentation tasks [Krizhevsky A, Sutskever I, 

Hinton GE, 2017]. A key example is the AlexNet 

architecture, which significantly advanced image 

classification performance on the ImageNet dataset. 

CNNs have also been applied in safety monitoring 

and behavioral analysis in construction sites, 

showcasing their potential to enhance safety and 

productivity [Fang W, Love PE, Luo H, Ding L, 

2020]. 

 Speech Processing 

CNNs have found applications in speech 

processing, particularly in automatic speech 

recognition (ASR). CNN-based acoustic models can 

extract meaningful features from audio signals and 

improve the accuracy of speech-to-text conversion 

[Palaz D, Magimai-Doss M, Collobert R, 2019]. 

The ability to capture local patterns in spectrograms 

has made CNNs effective in processing speech data. 

 Biometric Identification 

In biometric identification, CNNs play a 

significant role in palm vein recognition, fingerprint 

analysis, and facial recognition [Jhong SY, Tseng 

PY, Siriphockpirom N, et al., 2020]. These 

applications rely on the capacity of CNNs to 

automatically identify unique features in biometric 

data, enhancing the accuracy and security of 

identification systems. 

 Other Applications 

CNNs have also been applied in various 

other fields, including healthcare and 

bioinformatics. In medical imaging, CNNs are used 

to detect abnormalities and classify diseases. 

DeepCryoPicker, for example, employs CNNs to 

automate single protein particle picking in cryo-

electron microscopy (cryo-EM), improving the 

accuracy and efficiency of biological data analysis 

[Al-Azzawi A, Ouadou A, Max H, et al., 2020].  

CNNs have become a cornerstone of deep learning 

due to their efficiency, flexibility, and ability to 

automatically learn complex features from data. The 

structure of CNNs, with their convolution, pooling, 

and fully connected layers, provides a robust 

framework for diverse applications, including 

computer vision, speech processing, and biometric 

identification. The continued development and 

application of CNNs will likely lead to further 

advancements in various fields, as researchers 

explore new architectures and optimization 

techniques. 

ii. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) 

utilize a generator and a discriminator in an 

adversarial setup to iteratively improve image 

restoration. GANs are capable of producing realistic 

and high-quality deblurred images. However, their 

training process can be challenging and unstable, 

requiring significant computational power and 

careful tuning. 

Generative Adversarial Networks (GANs), 

introduced by Ian Goodfellow and colleagues in 

2014, consist of two competing neural networks: a 

generator and a discriminator. The generator creates 

synthetic samples (like images), while the 

discriminator attempts to distinguish between real 

and synthetic samples. The competition between 

these networks drives each to improve, resulting in 

the generator's ability to produce highly realistic 

outputs. 

GANs have found extensive applications in 

areas like image generation, where they can create 

realistic human faces and other complex images, 

and natural language processing, for text generation 

and data augmentation. They are also used for 

image-to-image translation and anomaly detection. 

Despite their success, GANs pose challenges like 

training instability and mode collapse, but ongoing 

research continues to refine these models and 

expand their applications. 

Comparative Analysis: 
A comparative analysis of these techniques 

reveals that traditional methods, while simpler, are 

often limited by assumptions about the PSF and 

noise. Optimization-based techniques offer greater 

flexibility but are computationally intensive and 

require fine-tuning. Machine learning and deep 

learning approaches demonstrate superior results, 

especially with complex blur patterns, but need 

substantial computational resources and large 

datasets. 

When comparing traditional image 

deblurring methods with machine learning-based 

approaches, a number of key differences emerge 

that highlight their respective strengths and 

limitations. 

a. Robustness to Noise 

Traditional deblurring methods, like inverse 

filtering, can be sensitive to noise because they 

assume precise knowledge of the point spread 

function (PSF). This sensitivity often leads to 

artifacts and degraded image quality when noise 

levels are high. Wiener filtering, as noted by A. K. 

Jain (1989), addresses this by incorporating noise 

estimation, but it requires accurate estimations of 

both the PSF and the noise power spectrum to 
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achieve robust results. On the other hand, machine 

learning-based approaches such as Convolutional 

Neural Networks (CNNs) and Generative 

Adversarial Networks (GANs) are generally more 

robust to noise. They can learn complex features and 

compensate for various types of noise, yielding 

more consistent outputs even when training data is 

imperfect. 

b. Computational Complexity 

Traditional methods range from simple 

techniques like inverse filtering, which are 

computationally lightweight, to more complex 

methods like blind deconvolution, described by D. 

Kundur and D. Hatzinakos (1996, 1998), which 

involve iterative estimation and can be 

computationally intensive. Total Variation 

Regularization, discussed by A. N. Tikhonov and 

V. Y. Arsenin (1977), is also computationally 

demanding due to its iterative nature. Machine 

learning-based approaches, particularly CNNs and 

GANs, are generally more computationally complex 

due to the need for large-scale training and 

extensive inference computations. However, these 

approaches can leverage parallel processing and 

GPU acceleration to mitigate the computational 

burden. 

c. Flexibility and Adaptability 

Traditional deblurring methods typically 

require prior knowledge of the PSF and do not 

easily adapt to different types of blur. Richardson-

Lucy deconvolution, as introduced by W. H. 

Richardson (1972), requires careful tuning and is 

sensitive to noise and initial conditions. Machine 

learning-based approaches, particularly CNNs, can 

adapt to various blur patterns due to their ability to 

learn from large datasets. This flexibility allows 

them to generalize better across different types of 

images and blur scenarios, providing broader 

applicability. 

d. Image Quality and Realism 

Machine learning-based techniques 

generally produce superior image quality compared 

to traditional methods. CNN-based deblurring 

approaches, like those discussed by Ian Goodfellow 

et al. in "Deep Learning" (2016), can 

automatically extract and leverage spatial 

hierarchies of features to generate high-quality 

images. Generative Adversarial Networks (GANs), 

proposed by Ian Goodfellow et al. (2014), offer 

even higher levels of realism through their 

adversarial training, leading to deblurred images that 

are often indistinguishable from real ones. 

Traditional methods can produce satisfactory results 

in certain cases, but they often struggle with artifacts 

and may not achieve the same level of realism. 

e. Practicality and Accessibility 

Traditional methods, like inverse filtering 

and Wiener filtering, are generally easier to 

understand and implement, making them more 

accessible for applications with limited 

computational resources or where simplicity is 

valued. However, they require specific parameter 

tuning and may not be suitable for complex blur 

scenarios. Machine learning-based approaches 

demand significant computational resources for 

training, along with large datasets, which can be a 

barrier to entry for some applications. Despite this, 

their versatility and high-quality outputs make them 

attractive choices for many advanced deblurring 

applications. 

In summary, traditional deblurring methods 

offer a foundational approach with varying degrees 

of complexity, but they often struggle with noise 

sensitivity, artifacts, and limited flexibility. Machine 

learning-based techniques, particularly CNNs and 

GANs, provide superior performance and flexibility, 

allowing them to adapt to different types of blur and 

produce high-quality results. However, they require 

considerable computational resources and careful 

training, which can present challenges in some 

scenarios. Ultimately, the choice between traditional 

and machine learning-based approaches depends on 

the specific requirements of the application, 

including noise robustness, computational 

complexity, and the desired level of image quality 

and realism. 

Conclusion: 
The choice of blur restoration technique 

depends on factors such as the type of blur, noise 

level, available computational resources, and desired 

output quality. Traditional methods may be suitable 

for controlled scenarios, while machine learning-

based approaches are increasingly preferred for their 

adaptability and high-quality results. Future research 

should focus on improving the stability and 

efficiency of machine learning methods, as well as 

exploring hybrid approaches that combine the 

strengths of traditional and modern techniques. 
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