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Abstract:  

In this paper, we introduced a Finsler space which     
  satisfies the birecurrence property in sense of 

Cartan. Further, if the directional derivative of covariant tensor field vanish, then the curvature tensor     
 , 

associate tensor        and   Ricci tensor     are birecurrent in Affinely connected space. 
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Introduction and Preliminaries: 

      The birecurrent Finsler spaces have been studied by Pandey [8], Dikihi [5], Qasem [10], Qasem and Saleem 

[12], Muhib [7], Saleem and Abdallah [14-16] and Verma [18]. An affinely connected space for    curvature 

tensor that satisfy the birecurrence property discussed by [6]. Let us consider an   dimensional Finsler space    

equipped with the line elements       and the fundamental metric function   that positive homogeneous of 

degree one in    [1, 3, 13]. The vectors    and     satisfy  
 

(1.1) a)     
     ,   b)  ̇     ̇        ,   c)      

       and   d)     
 

 
 ̇  ̇  

        

Cartan’s covariant derivative of the fundamental metric function  , vector    and unit vector    vanish 

identically, i.e.   

(1.2) a)       ,       b)     
   ,        and        c)            

Cartan’s covariant derivative of an arbitrary tensor   
  with respect to    is given by [4] 

(1.3)    a)   ̇ (    
 )  ( ̇   

 )
  

   
 ( ̇     

  )    
 ( ̇     

  )    ̇   
     

  ,  

where   b)     
  ( ̇     

  )               and             c)     
         .  

      The Berwald curvature tensor      
  is positively homogeneous of degree zero in    and skew-symmetric in its 

last two lower indices which defined by [13] 

                
       

     
    

     
   

     .  

In view of Euler’s theorem on homogeneous functions, we have the following relations  

(1.4)   a)    ̇    
      

 ,              b)      
       

 ,                 c)               
 , 

           d)     
      

 ,                e)     
   ̇   

 ,                     f)          
 , 

           g)        
  ,                    h)    

 

   
  

        and          i)      
         .    

The relation between the normal projective curvature tensor     
  and Berwald curvature tenser     

  satisfies [8, 

9] 

(1.5)        
      

  
 

   
   ̇     

  , 

where the normal projective curvature tensor     
  is homogeneous of degree zero in   . 
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Contracting the indices   and   in (1.5) and using the fact that the tensor     
 is positively homogeneous of degree 

zero in   , we get  

(1.6)        
      

   

Transvecting (1.5) by    and using (1.4b), we get  

(1.7)        
       

   

      The projective curvature tensor     
  and normal projective curvature tensor     

  are connected [13] by 

(1.8)    a)      
      

      
          

      , 

where  b)       
 

    
                       and                c)          

 .    

The projective curvature tensor     
 satisfies the following [13] 

(1.9)    a)      
       

  ,        b)     
      

         and       c)     
     . 

      A Finsler space whose connection parameter    
  is independent of    is called an affinely connected space 

[13]. Thus, one of the equivalent equations characterizes an affinely connected space 

(1.10)  a)      
                    and                  b)          . 

The connection parameters of Cartan and Berwald     
   and    

  coincide in affinely connected space and they are 

independent of the direction argument, i.e. [2, 11] 

(1.11)  a)   ̇    
                  and                 b)   ̇    

      

      Cartan’s connection parameter    
   coincides with Berwald’s connection parameter    

  for a Landsberg 

space, which is characterized by [13] 

(1.12)        
           

          .   

The    recurrent Finsler space introduced and defined by [17] 

(1.13)        
        

 ,           
   .    

where    
 is non-zero covariant vector field.      

Main Results 

Definition 2.1. Finsler space    which the projective curvature tensor     
  satisfies the following birecurrent 

property i.e. characterized by  

(2.1)           
         

 ,          
   .    

where     
is non-zero covariant tensor field. This space will be called a   – Birecurrent Finsler space. And 

denote it briefly by       .  

      Transvecting (2.1) by   , using (1.2b) and (1.11a), we get 

(2.2)           
        

 .                                                        

Transvecting (2.2) by    , using (1.2b) and (1.9b), we get 

(2.3)          
       

 .                                                                                                               

Thus, we conclude  

Theorem 2.1. In       , the projective torsion tensor    
  and projective deviation tensor    

  are 

birecurrent.                                                                           

      Differentiating (1.8a) covariantly with respect to    and    in the sense of Cartan, we get 
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(2.4)            
          

      
           

         .   

Using (2.1) and (1.8a) in above equation, we get  

                    
          

   (  
       

    )      
           

         .  

Contracting   and   in above equation and using (1.8c) and the property skew – symmetric for     , we get  

                                                    .      

Using (1.8b) in above equation, we get  

                           
 

   
   (        )  

 

   
                  .      

Using the property skew –symmetric for      in above equation, we get  

                                           .      

which can be written by  

(2.5)                  .  

Thus, we conclude  

Theorem 2.2. In       , if     and     is property skew –symmetric, then      is birecurrent.                                                                           

     Differentiating (1.8b) covariantly with respect to    and    in the sense of Cartan, using (2.5), we get 

(2.6)             
 

    
             .  

Using (1.8b) in (2.5), we get  

(2.7)                  .  

Using (2.1), (2.7) and (1.8a) in (2.4), we get  

(2.8)            
         

 .   

Thus, we conclude  

Theorem 2.3. In       , the tensor     and the normal projective curvature tensor     
  are birecurrent. 

Transvecting (2.8) by   , using (1.2b) and (1.7), we get 

(2.9)           
        

 .                                                        

Transvecting (2.9) by    , using (1.2b) and (1.4d), we get 

(2.10)          
       

 .   

Contracting the indies   and   in (2.8) and using (1.4g), we get  

(2.11)              .                                                       

Contracting the indies   and   in (2.9) and using (1.4h), we get  

(2.12)            .   

Thus, we conclude  

Theorem 2.4. In       , the torsion tensor    
 , deviation tensor   

 , curvature vector    and scalar 

curvature H are birecurrent.  

      In next  result, we obtained the necessary and sufficient condition for some tensors to be birecurrent in 

      .  Differentiating (2.9) partially with respect to  , we get 

             ̇ (       
 )  ( ̇    )   

      ̇    
   

Using commutation formula exhibited by (1.3a) for    
  in above equation, using (1.4a), we get 
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(2.13)          
      

 ( ̇    
  )     

 ( ̇    
  )     

 ( ̇    
  )      

    
                                            

      
 ( ̇    

  )       
 ( ̇    

  )       
 ( ̇    

  )       
 ( ̇    

  )  

                                  
    

  ( ̇    )   
         

   

This shows that  

(2.14)          
         

    

if and only if  

(2.15)      
 ( ̇    

  )     
 ( ̇    

  )     
 ( ̇    

  )      
    

          
 ( ̇    

  )  

                  
 ( ̇    

  )       
 ( ̇    

  )       
 ( ̇    

  )        
    

  ( ̇    )   
      

Transvecting (2.13) by    , using (1.4c), (1.1c) and (1.2c), we get  

(2.16)                   
 ( ̇    

  )     
 ( ̇    

  )     
 ( ̇    

  )      
    

                               

          
 ( ̇    

  )       
 ( ̇    

  )       
 ( ̇    

  )       
 ( ̇    

  )        
    

    

 .                                            ( ̇    )   
           

This shows that  

(2.17)                     

if and only if  

(2.18)          
 ( ̇    

  )     
 ( ̇    

  )     
 ( ̇    

  )      
    

          
 ( ̇    

  )  

                 
 ( ̇    

  )       
 ( ̇    

  )       
 ( ̇    

  )        
    

  ( ̇    )   
      

Contracting the indices   and   in (2.13), using (1.4f) and (1.4g), we get 

(2.19)              
 ( ̇    

  )    ( ̇    
  )     

 ( ̇    
  )        

                                                

      
 ( ̇    

  )      ( ̇    
  )       

 ( ̇    
  )      ( ̇    

  )          
   

                               ( ̇    )           

This shows that  

(2.20)                 

if and only if  

(2.21)      
 ( ̇    

  )    ( ̇    
  )     

 ( ̇    
  )        

           
 ( ̇    

  )  

                      ( ̇    
  )       

 ( ̇    
  )      ( ̇    

  )          
  ( ̇    )       

Thus, we conclude  

Theorem 2.5. In       , the Berwald curvature tensor     
 , associate tensor       and    Ricci tensor     

are birecurrent if and only if (2.15), (2.18) and (2.21) hold.  

Remark 3.2. If the        is affinely connected space, then the new space will be called      affinely 

connected space.  

      Let us consider       affinely connected space. In view of (1.3c), (1.11b), (1.12) and if   ̇      ,  then 

(2.13) becomes  

(2.22)        
        

    

In view of (1.3c), (1.11b), (1.12) and if   ̇      , then  (2.16) becomes 

(2.23)                      
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Contracting the indices   and   in (2.13), using (1.3c), (1.11b), (1.12) and if   ̇      , then (2.19) becomes  

(2.24)                 

Thus, we conclude  

Theorem 2.6. In       affinely connected space, if the directional derivative of covariant tensor field vanish, 

then the curvature tensor     
 , associate tensor        and   Ricci tensor     are birecurrent. 

 

Conclusion:  
      This paper discussed some tensors that are 

birecurrent in   –birecurrent Finsler space. The 

necessary and sufficient condition for  some tensors 

that be birecurrent has been discussed. 
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