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ABSTRACT:  

The linear multi-objective capacitated transportation 
problem in which the supply and demand constraints are equality 
type, capacity restriction on each route are specified and the 
objectives are non- commensurable and conflict in nature. The fuzzy 
programing technique (Linear, Hyperbolic and Exponential) is used 
to find optimal compromise solution of a multi-objective capacitated 
transportation problem has been presented in this paper. An 
example is illustrate the methodology. Also comparison istaken out, 
using same example.  
Keyword: Multi-criteria Decision Making, Capacitated 
Transportation Problem, Linear Membership Function, Non-linear 
Membership Function. 

 
INTRODUCTION: 
        A transportation problem with capacity restriction is a linear 
programming problem. A basic solution to a capacitated transportation problem 
may contain more than m+n-2 positive values due to the capacity constraints 
which are additional to the m+n-2 independent equations. Fuzzy linear 
programming occurs when fuzzy set theory is applied to linear multi-criteria 
decision making problem. In fuzzy set theory, an element x has a degree of 
membership in a set A, denoted by a membership function (X). The range of the 
membership function is [0, 1]. Degree of the membership function for each 
objective represents its satisfaction level. If the membership function of an 
objective is one or zero then objective is fully achieved or not at all 
achieved,respectively. If the membership function of the objective lies in (0, 1) 
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then the objective is partially achieved. In this paper, we present fuzzy 
programming with linear and hyperbolic membership function for solving multi-
objective capacitated transportation problem. 
 
MULTI-OBJECTIVE CAPACITATED TRANSPORTATION PROBLEM: 
              Consider m origins (i=1,2,…,m) and n destinations (j=1,2,…,n)                                       

at each origin iO , let ia be the amount of a homogeneous product which we want 

to transport to n destinations  jD to satisfy the demand for jb  units of the 

product there. A penalty p
ijc  is associated with transportation of a unit of the 

product from source i to destination j  for the p-th criterion. The penalty could 
represent transportation cost, delivery time, quantity of goods delivered, under 

used capacity. A variable ijX  represents the unknown quantity to be transported 

from origin iO  to destination jD . Let ijr  be the capacity restrictions on route i, j 

for capacitated transportation problem. 
A multi-objective capacitated transportation problem can be represented as: 
 







 

m n
p

p ij ij
i=1 j=1

n

ij i
j=1

m

ij ji=1

ij ij

Minimize Z = c x (2.1)p=1,2,...,P
Subject to

x =a , i=1,2,...,m (2.2)

x =b (2.3)j=1,2,...,n
0 x r for all i,j (2.4)

 

Where the subscript on pZ  and superscript on p
ijc  denote p-th penalty criterion; 

i j ija >0 for all i b >0 for all j, r 0 for all i,j  

And  
m n

i j
i=1 j=1

a = b  as balanced condition.This balanced condition is necessary 

condition for the problem to have a feasible solution, however, this is not 
sufficient because of the condition (4.4). 
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For p=1, problem become to a single objective capacitated transportation 
problem. It may be considered as a special case of linear programming problem.   
 
FUZZY PROGRAMMING TECHNIQUE FOR THE MULTI-OBJECTIVE 
CAPACITATED TRANSPORTATION PROBLEM: 

Let Up, Lp be the upper and lower bound for the p-th objective function, 
where lower bound indicates aspiration level of achievement and upper bound 
indicates highest acceptable level of achievement for the objective function 
respectively.  

Let dp= (Up – Lp) be degradation allowance for the Zp objective.Once the 
aspiration levels and degradation allowance for each objective have been 
specified, we have formed the fuzzy model. Our next step is to transform the 
fuzzy model into a "Crisp" model.  
Case i) Algorithm  
Step 1:  
             Solve the multi-objective capacitated transportation problem as a single 
objective  capacitated transportation problem using, each time, only one objective 

(ignore all others).   Let   1* 1 2* 2 p* p
ij ij ijX  = {x }, X  = {x }, ..., X ={x }  be the optimum 

solutions for pdifferent single objective capacitated 
transportation problem. 
Step 2:  
       From the results of step 1, calculate the values of all the objective functions 

at all these  1* 2* p*X ,X ,...,X  optimal points. Then a payoff matrix is formed. The 

diagonal of the matrix constitutes individual optimum minimum values for the p 

objectives. The 1* 2* p*X ,X ,...,X are the individual optimal solutions and each of 

these are used to determine the values of other individual objectives, thus the 
pay off matrix is developed as:  
   1 2 pZ (X) Z (X) ... Z (X)  
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(1)

(2)

(P)

X

X
.
.
X

1 1 1 2 1 p

2 p2 1 2 2

p 1 p 2 p p

Z Z … Z

. . . ZZ Z
. . . . . . . . . . . .

Z  Z Z

 
 
 
 
 
 
 
 
 
 
 
 

 

Step 3:   
      From step 2, we find for each objective, the lower bound (Lp) and upper bound 

(Up) corresponding to the sets of p solutions.  

An initial fuzzy model of the problem (2.1-2.4) can be stated as: - 

Find xij, i =1, 2, …,m;  j = 1, 2, …,n;   
So as to satisfy 

p p  Z   L


,                                                                                        (3.1) 

Subject to 
n

ij i
j=1

=X a  ,    i = 1,2,…,m                                      (3.2)   

ij

m

j
i=1

=X b  ,    j = 1,2,…,n                                       (3.3)                      

xij  0   for all i, j, k                (3.4)   



 (fuzzification symbol) indicates nearly less than equal to 

Step 4: Case (i) 

             Define a hyperbolic membership function
p

H

p
( )µ Z  for the p-th objective, 

are defined as follows 
p

p p
pH

p p
+

 - +
U L1 1μ (Z ) tanh Z α

2 2 2
  

          
   (3.5) 

where pα  is a parameter. Where 
p p

p
p p

3 6α = =(U -L )/2 (U -L )  

The hyperbolic membership function (3.5) has the following properties: 
1. It is a strictly decreasing function. 
2. It is a strictly concave for p p p( + ) Z U L / 2 . 

3. It is equal to 0.5 for p p p( + )Z U L / 2 . 
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4. It is a strictly convex for p p p( + ) ,Z U L / 2  

5. For all mnX R holds H
p p( ) < 1,o<µ Z H

p p( ) =1,µ Z is the lower asymptotic 

function of H
p pµ (Z ), ;  H

p p( )µ Z  = 0, is the upper asymptotic function of H
p pµ (Z ) . . 

Step 5: 
         Formulate an equivalent nonlinear programming model with the help of 
the defined membership function (5.9) for the multi-objective capacitated 
transportation problem. This is stated as follows:  
  Maximize λ       (3.6) 

subject to  
H
p p( )λ μ Z  

n

ij i
j=1

=X a  ,    i = 1,2,…,m                                    (3.7)   

ij

m

j
i=1

=X b  ,    j = 1,2,…,n                                     (3.8)                      

xij  0   for all i, j and    λ 0     (3.9)   

where H
p p

p
(λ {μ Z )}Min  

      This is a nonlinear programming problem with one linear objective 
function, p non-linear and m+n+2mn+1 linear restriction. We shall now 
prove that there exists an equivalent linear programming problem. 

Theorem: Define mn+1X = tanh-1(2λ – 1). The equivalent linear programming 

problem for the above nonlinear programming problem is as follows:   
               Maximize λ                                          (3.10) 

subject to  

p p pmn+1 p p( + )α Z +X α U L / 2 for all p.                  (3.11)                                        

constraints (2.2),(2.3), (2.4) and λ 0  

-t

t -t

t
e -eProof. For t  R, we know tanh(t)=
e +e

  .  

Therefore, nonlinear programming problem can be formulated as:  

Maximize  λ                                                                 (3.12) 
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subject to  

p p
pp

+
 -

U L1 1λ tanh Z α
2 2 2

  
      

   (3.13)   

constraints (2.2),(2.3), (2.4) and λ 0  

   This is equivalent to  
    Maximize λ                                                  (3.14)   
subject to  

p p
pp

+
-

U L
tanh Z α 2λ-1

2
  

     
    (3.15) 

Constraints (2.2),(4.3),(4.4)andλ 0    (3.16) 

Since tanh and -1tanh are strictly increasing functions we have equivalently  

Maximize λ                                                                (3.17) 
subject to  

-1p p
pp

+
- ( )

U L
Z α tanh 2λ-12

 
 

 
    (3.18) 

constraints (1.2), (1.3), (1.4) and λ 0   (3.19)    

   Or   with -1
mn+1 ) X =tanh  (2λ - 1  

Maximize λ                                                               (3.20) 
subject to  

p p
p pmn+1 p

+U L
X α Z α2

 
  

 


    
(3.21) 

Constraints (1.2), (1.3), (1.4) and λ 0    (3.22)                                             

Because of mn+1tanh(X ) 1λ = +
2 2

 and the tanh function strictly increasing, it 

follows equivalently: 

Maximize mn+1X       (3.23) 

subject to  

p p
p pmn+1 p

+U L
X α Z α2

 
  

 
     (3.24) 

constraints (2.2),(2.3), (2.4) and mn+1X 0              (3.25) 
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This linear programming can be further simplified as: 
Maximize mn+1X       (3.26) 

subject to 

p

1

m n
p pmn+1

ij ij
i =1 j= p

+U LXc
α 2

 
  

 
 x     (3.27) 

constraints (2.2),(2.3), (2.4) and mn+1X 0  

this model does not the form of a capacitated transportation problem. 
The foregoing problem is a single objective linear programming that can be 
solved by linear programming algorithm 

mn+1
*tanx 1*λ = +

2 2
and 1 1 1 1

1 2 pZ(X )={z (x ),z (x ),...z (x ),}   is a non-dominated 

solution. This non dominated solution is an optimal compromise solution. 
For integer optimal compromise solution we use model in step 5 with the mn 
integer. 
Cases (ii) Linear Membership Function (iii) Exponential membership 
function are nearly same 
Numerical Example: 

1 11 12 13 21 22 23 31 32 33Minimize Z =5X +3X +2X +6X +4X +7X +2X +8X +6X  

2 11 12 13 21 22 23 31 32 33Minimize Z =4X +6X +5X +7X +8X +6X +5X +2X +3X  

3 11 12 13 21 22 23 31 32 33Minimize Z =9X +9X +7X +3X +9X +3X +7X +9X +10X  
3 3 3

1j 2j 3j
j=1 j=1 j=1

3 3 3

i1 i2 i1
i=1 i=1 i=1

ij

X =120 ; X =145 ; X =95

X =80 ; X =100 ; X =180

X 0 i=1,2,3. , j=1,2,3.

  

  



 

Capacity restrictions of the routes are given as: 

11 12 13

21 22 23

31 32 33

0 x 45, 0 x 60, 0 x 100
0 x 90, 0 x 100, 0 x 80
0 x 125, 0 x 85, 0 x 130

     
     
     

 

Step1 and step 2. Optimal solutions for minimizing the first objective 1Z  

Subject to constraints () and () are as follows 
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
11 12 13 21

22 23 31 33

1

x = 20, x = 60, x = 40,x = 25,
40, x = 80, x = 35, x = 60  

and other decision variable are zero
and Z = 1660

x
 

Optimal solutions for minimizing the second objective 2Z  

Subject to constraints () and () are as follows 


11 12 13 21

22 23 32 33

2

x = 45, x = 35, x = 40,x = 35,
30, x = 80, x = 35, x = 60  

and other decision variable are zero
and Z = 1805

x  

Optimal solutions for minimizing the third objective 3Z  

Subject to constraints () and () are as follows 


11 12 13 21

22 23 32 33

3

x = 20, x = 60, x = 40,x = 60,
5, x = 80, x = 35, x = 60  

and other decision variable are zero
and Z = 2380

x  

Now for (2)X  we can find out 1Z ,          (2)
1Z (X )=1935  

Now for (3)X  we can find out 1Z ,          (3)
1Z (X )=1940  

Now for (1)X  we can find out 2Z ,          (1)
2Z (X )=1570  

Now for (3)X  we can find out 2Z ,          (3)
2Z (X )=2190  

Now for (1)X  we can find out 3Z ,          (1)
3Z (X )=2670  

Now for (2)X  we can find out 3Z ,          (2)
3Z (X )=2530  

The payoff matrix is  
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 
 
 
  

1 2 3

(1)

(2)

(3)

1 2 3

1 2 3

Z Z Z
X 1660 1570 2520
X 1935 1805 2530

1940 2190 2380X

U =1940, U =2190, U =2530 
L =1660, L =1805, L =2380

 

 ij

1 2 3

Find x , i=1,2,3; j=1,2,3 so as satisfy
Z 1660, Z 1805, Z 2380 and constraints (4.1),(4.2)  

  

 

Step4. With p 1 2
p p 1 1 2 2

6 6 6 6 6, ,
U L U L 280 U L 385

       
  

 

 

1 1
3

3 3

2 2 3 3

6 6 U L, 1800,
U L 150 2

U L U L1997.50, 2455
2 2


   


 

 
 

We get the membership functions H H H
1 1 2 2 3 3(Z ), (Z ), (Z )    for the objectives Z1,Z2 

and Z3 

3x3+1Maximize X  

Subject to 

1 1
1 1 mn+1 1

U +Lα Z (X)+X α ( )
2

  

X11 12 13 21 22 23 31 32 33 mn+1
6 6(5X +3X +2X +6X +4X +7X +2X +8 +6X )+X (1800)

280 280
  

X11 12 13 21 22 23 31 32 33 mn+130X +18X +12X +36X +24X +42X +12X +48 +36X +280X 10800
 
Now, 

2 2
2 2 mn+1 2

U +Lα Z (X)+X α ( )
2

  

X11 12 13 21 22 23 31 32 33 mn+1
6 6(4X +6X +5X +7X +8X +6X +5X +2 +3X )+X (1997.5)

385 385
  
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X11 12 13 21 22 23 31 32 33 mn+124X +36X +30X +42X +48X +36X +30X +12 +18X +385X 11985
 
And 

3 3
3 3 mn+1 3

U +Lα Z (X)+X α ( )
2

  

X11 12 13 21 22 23 31 32 33 mn+1
6 6(9X +9X +7X +3X +9X +3X +7X +9 +10X )+X (2455)

150 150
  

11 12 13 21 22 23 31 32 33 mn+1X54X +54X +42X +18X +54X +18X +42X +54 +60X +150X 14730
 
The problem was solved by using the linear interactive and discrete optimization 
(LINDO) software, the optimal compromise solution is 

mn+1

1211 13 21 22
*

23 31 32 33

* * *
1 2 3

                                    X 0.1034
x =20,x 60, x =40, x =41.896553, x =23.103449,

X = x =80, x =18.103449,x =16.896551 x =60

           Z =1789.3493 ;  Z =1715.3103 and Z =244



 
 
 
 
 



8.7931
 

λ=0.55

 

 
ii) Linear Membership Function 
Find an equivalent crisp model 
Maximize λ  ,            

1Z (X)+280λ 1940  

X11 12 13 21 22 23 31 32 33 λ5X +3X +2X +6X +4X +7X +2X +8 +6X +280 1940  

and 
Maximize λ  ,            

2Z (X)+385λ 2190  

X11 12 13 21 22 23 31 32 33 385λ 21904X +6X +5X +7X +8X +6X +5X +2 +3X +   

Maximize λ  ,   

X11 12 13 21 22 23 31 32 33 150λ 25309X +9X +7X +3X +9X +3X +7X +9 +10X +   

3Z (X)+150λ 2530  
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1211 13 21 22
*

23 31 32 33

* * *
1 2 3

                         
x =20,x 60, x =40, x =41.896553, x =23.103449,

X = x =80, x =18.103449,x =16.896551 x =60

           Z =1789.3493 ;  Z =1715.3103 and Z =2448.7931
 

λ=0.5172

 
 
 
 
 



 

iii) Exponential Membership Function 
Then an equivalent crisp model for fuzzy model can be formulated as 

Maximize λ  

subject to 

 p-1ψ x -1e -eλ ,-11-e
 p = 1,2,-----P  and     subject to  (7)-(9) 

1 1 1 1
1

1 1

Z -L Z -1660 Z -1660Ψ (X)= = =
U -L 1940-1660 280

 

2 2 2 2
2

2 2

Z -L Z -1805 Z -1805Ψ (X)= = =
U -L 2190-1805 385

 

3 3 3 3
3

3 3

Z -L Z -2380 Z -2380Ψ (X)= = =
U -L 2530-2380 150

 

1Ψ (X)= X  11 12 13 21 22 23 31 32 33(5X +3X +2X +6X +4X +7X +2X +8 +6X -1660) / 280  

2Ψ (X) = X11 12 13 21 22 23 31 32 33(4X +6X +5X +7X +8X +6X +5X +2 +3X -385) / 385  

3Ψ (X) = X11 12 13 21 22 23 31 32 33(9X +9X +7X +3X +9X +3X +7X +9 +10X -2380) / 150  

Then the problem can be simplified as 
Maximize λ  

1 1 1   -Ψ(X) -Ψ(X) -Ψ(X)-1 -1e -(1-e )λ e e -(1-0.368)λ 0.368 e -(0.6321)λ 0.368     

1 2 2   -Ψ(X) -Ψ (X) -Ψ (X)-1 -1e -(1-e )λ e e -(1-0.368)λ 0.368 e -(0.6321)λ 0.368     

3 31    -Ψ (X) -Ψ (X)-Ψ(X) -1 -1e -(1-e )λ e e -(1-0.368)λ 0.368 e -(0.6321)λ 0.368     

The problem is solved by the (LINGO) software 
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12 13 21 23 31 32*

ij

* *
1 2

x =20, x =100, x =65, x =80, x =15, x =80.
X = rest all x are zero's
Z =517.5 and Z =376.5

λ=0.8070

  
 
  

 

And Ideal solution is {1660,1805,2380}. Also, set of non-dominated solutions 
{1660,1570,2520}; {1935,1805,2530}; {1940,2190,2380} 
 

CONCLUSION: 
We have obtained same optimal compromise solution by our proposed 

algorithm and fuzzy algorithm with membership functions (Bit et al. 1]) for the 
multi-objective capacitated transportation problem. For a multi-objective 
capacitated transportation problem with pobjective functions, the fuzzy 
programming with hyperbolic, linear and exponential membership function gives 
p non-dominated (efficient) solutions and an optimal compromise solution. The 
fuzzy programming algorithm with hyperbolic membership functions is 
applicable to multi-objective capacitated solid transportation problems and the 
vector minimum problems. This algorithm can be applied to the variants of 
multi-objective transportation problems similar linear multi objective 
programming problems. This paper is to be seen as a first step to introduce non-
linear membership functions to a multi-objective capacitated transportation 
problem. The value of membership function of an objective represents the 
satisfaction level of the objective. 
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