

www.ijaar.co.in

ISSN – 2347-7075 Peer Reviewed Vol.9 No.6 Impact Factor – 7.328 Bi-Monthly July – Aug 2022

AMBIENT AIR QUALITY MONITORING IN A POPULAR TOURIST DESTINATION IN MAHARASHTRA, AURANGABAD

Mohamad Hanif¹ Sherkhan Pathan²

¹Department of Environmental Science, Kohinoor Arts Commerce and Science College Khultabad, Dist Aurangabad ²Department of Chemistry, Kohinoor Arts Commerce and Science College Khultabad, Dist Aurangabad *Corresponding Author-* Mohamad Hanif Email- <u>haneef.mansuri@gmail.com</u> *DOI-* 10.5281/zenodo.7071272

Abstract:

Numerous health problems in both people and animals have been linked to air pollution. The investigation of how air pollution impacts health is ongoing, some dangerous diseases like cardiovascular disease, diabetes, obesity, and abnormalities of the reproductive, respiratory nervous, immune systems and Cancer are currently among the public health concerns. In the current study, we are attempting to determine the Aurangabad city's air quality, which can be useful in reducing air pollution. The results demonstrate that SBES college station is the most polluted and has the worst Air Quality Index of all the tested stations. Low air quality indices are seen at the final three stations, Waluj MIDC, C.A.D.A., and Collector Office. The AQI results for each sampling station indicate that the number of pollutants in the air in Aurangabad is steadily increasing, which is lowering the city's air quality. The air quality in those locations is poor to very poor. The results of the current study may serve to awaken people who are complacent about air pollution.

Keywords: Pollution, Pollutants, Air Quality Index, Stations.

1. Introduction:

Today's world still has a serious problem with air pollution. Numerous elements have an impact on air quality. The majority of experts think that socioeconomic human activities have the most effects on the environment[1]. For the majority the of vear. many industrialized and emerging cities experience poor air quality. Land-based industrial pollutants, transportation, and human-caused activities are the main sources of air pollution[2]. The people's quality of life is impacted by ambient air pollution in urban areas of both developed and developing nations. Around 1.5 billion people are exposed to ambient higher air pollutant concentrations of suspended particulate

matter (SPM), Sulphur dioxide (SO₂), according and ozone, to recent publications based on a study by Hong in 1995 (personal communication). The negative effects of ambient air pollution on health are well known in developed nations. The public is still not well informed about the negative effects of air pollution on health, especially in emerging nations where coal is heavily used for burning and the number of cars is rising. Only recently has ambient air pollution begun to receive the attention it deserves as a daily worry for everyone who lives in urban areas of emerging nations. However, due to the severity of the air pollutant concentrations observed in such areas, adverse health effects are anticipated for the local populations[3]. Total mortality was directly linked to prolonged exposure to particulate matter in all analytical analyses. More than 7000 litres of air, containing diverse amounts of inorganic, organic, and different types of gases, are directly inhaled into our lungs each day[4]. The Air Quality Index is a tool used to easily explain the ambient air quality to the general public. It simplifies the complicated information about different air contaminants into a single number known as the index value together with nomenclature and color. The Central Pollution Control Board of India's criteria were followed in order to compute the Air Quality Index (AQI) and attempt to depict the overall air quality in Aurangabad's residential and industrial areas[5].

2. Material and Methods:

Aurangabad district lying between 19⁰ 18' and 20⁰ 40' north latitude and 74⁰40' and 76⁰ 40' east longitude with an area of 16,200.0 square kilometres had a population of 19,71,006 with 10 towns and 1, 975 villages of which 109 were uninhabited as per the Census of 1971. Roughly triangular in shape, the southern side corresponds to the Godavari and the northern side to the northeast trending arm of the Ajanta ranges. With an extreme east to west distance of nearly 175 kilometers, this district is bounded by Jalgaon district on the north, Buldhana and Parbhani districts on the east, Bhir and Nasik district on the west and Ahmednagar districts on the south. The location and geographical information of the study area is obtained from *GEOGRAPHY* (maharashtra.gov.in).

It isbest to learn about Maharashtra's rich history in Aurangabad, which is home to the gorgeous and historically significant Ajanta and Ellora Caves. The city's picturesque landscape. which is peppered with palaces, tombs, and parks, makes it a must-visit tourist destination for those who enjoy history and architecture. Also abundant in Aurangabad are handicrafts and metal goods that make wonderful mementos. UNESCO World Heritage Sites like the Ajanta and Ellora Caves are located in Aurangabad, sometimes referred to as the "City of Gates." Study area political, historical, and tourist information is gathered from Aurangabad Citv Information About Aurangabad, History. Guide Facts and Thepackersmovers.com.

Figure 1. Study Area, Aurangabad city of Maharashtra [6]

Data for present study is obtained from Maharashtra Pollution Control Board (mpcb.gov.in). Sampling is done at four different locations viz. Waluj MIDC (Industrial Type), C.A.D.A (Residential Type), SBES College (Residential Type) and Collector office (Residential Type). The sampling of SOx, NOx, Suspended Particulate Matter (SPM) and Respirable Suspended Particulate Matter (RSPM) was recorded continuously for 24-hours on two days in each week.

An air quality index is defined as a systematic scheme that directly convert the weighed values of individual air pollution-related parameters (such as pollutant concentrations) into a single number or set of numbers (Ott, 1978). The end result is a set of rules (i.e. a set of equations) that use numerical manipulation to translate parameter values into a more simple form. If actual concentrations are reported in μ g/m³or ppm (parts per million) in addition to standards, it cannot be considered an index. At the end of any system, an index will group specific concentration ranges into air quality descriptor categories[7].

2.1.2.Sub-Index calculation:

The Air Quality Index (AQI) is designed in such a way that any three parameters from SPM, RSPM, SO₂, NO₂, CO, O₃, Pb, and NH₃ are enough to calculate the AQI. Sub-indices for each selected pollutant were calculated, and the highest value from among all subindex values was chosen as the AQI for that area. For a given pollutant concentration (*Cp*), the sub-index (*Ip*) was calculated as[5],

$$I_{P} = \left[\left\{ \frac{I_{HI} - I_{LO}}{B_{HI} - B_{LO}} \right\} \times (C_{P} - B_{LO}) \right] + I_{LO}$$

Where,

 B_{HI} = Breakpoint concentration greater than or equal to given concentration B_{LO} = Breakpoint concentration smaller than or equal to given concentration I_{HI} = AQI value corresponding to B_{HI} I_{LO} = AQI value corresponding to B_{LO} , subtract one from I_{LO} if I_{LO} is greater than 50

Cp = Pollutant concentration

Finally, AQI = Max (*Ip*) (where, p = 1, 2, 3 ...denotes n pollutants)

3.2.1Result and Discussion:

The sub-index values for the respective pollutant concentrations that are calibrated to Indian circumstances are shown in Table 1. along with their linear segmented connection. Table 2. lists different gaseous and particle contaminants as National Ambient Air Quality Standards (CPCB, 2009).

			quantifier		
AQI Category	AQI	PM10	PM2.5	NO2	\mathbf{SO}_2
Good	0 - 50	0- 50	0 - 30	0 - 40	0 - 40
Satisfactory	51 - 100	51 - 100	31 - 60	41 - 80	41 – 80
Moderately polluted	101 - 200	101 - 250	61 - 90	81 - 180	81 – 380
Poor	201 - 300	251 - 350	91 - 120	181 - 280	381 - 800
Very poor	301 – 400	351 - 430	121 - 250	281 - 400	801 - 1600
Severe	401 - 500	430 +	250+	400+	1600+

Table 1.: Breakpoints for AQI Scale 0-500 (all pollutants are in units of μ g/m3 and CO is expressed in units of mg/m3). *Hourly monitoring Source: Central Pollution Control Board[8].

The concentration of various gaseous and particulate pollutants recorded at various sampling locations is shown in Tables 3, 4, 5 and 6. The results of the air quality monitoring show that, based on the density of The observations show that during all of the observed locations, SO_2 levels were within the established NAAQS. Low levels of SO_2 may be the result of mobile and stationary air pollution sources, pollution concentration changed at different sampling locations. While gaseous pollutants stayed within acceptable limits, particulate pollutants exceeded the guidelines.

numerous actions performed, such as reducing the amount of sulphate in diesel, using less outdated

			Conc	entration in a	mbient air
Sr. No.	Pollutant	utant Time- weighted average Industrial Areas, Residential, Rural & othe Area		Ecological Sensitive Area	Methods of Measurement
1	Sulphur Dioxide	Annual Average	$50~\mu { m g}/~{ m m}^3$	$20~\mu\text{g}/~\text{m}^3$	-Improved West and Greek method
L	(SO ₂)			$80 \ \mu\text{g}/\ \text{m}^3$	-Ultraviolet Flurorescence
2	Oxides of Nitrogen as	Annual Average	$40 \ \mu g/ \ m^3$	$30 \ \mu g/ \ m^3$	-Modified Jacob and Hochheiser
	(NO ₂)	24 hours	80 μg/ m ³	80 μg/ m³	-Chemiluminescence
3	Suspended Particulate	Annual Average	60 μg/ m³	$60 \ \mu\text{g}/\ \text{m}^3$	-Gravimetric -TOEM
	Matter	24 hours	100 μg/ m ³	$100 \ \mu g/ \ m^3$	-Beta attenuation
	Respirable Suspended	Annual Average	$40 \ \mu g/ \ m^3$	$40 \ \mu\text{g}/\ \text{m}^3$	-Gravimetric
4	Particulate Matter	24 hours	60 μg/ m ³	60 μg/ m ³	-TOEM -Beta attenuation

Table 2. : National Ambient Air Quality Standards (CPCB, 2009) [9]

automobiles, etc. Additionally, NO₂ levels at all of the monitored locations were within the permitted NAAQS. The removal of outdated automobiles, improved traffic management, and other actions may be the causes of the low NO₂ levels. During all of the monitoring Locations, RSPM levels surpassed the authorized NAAQS and SPM levels did so by a significant margin as well.

The data demonstrate that SO_2 levels at all of the places where they were measured were within the NAAQS. Reduced amounts of sulphate in diesel, the use of more modern vehicles, and other efforts may all contribute to low SO_2 NO_2 levels. Furthermore. were all below concentrations the permissible NAAQS at all of the tested locations. The removal of old cars, better traffic management, and other measures could be to blame for the low NO_2 levels. RSPM levels consistently exceeded the authorized NAAQS for all of the monitoring locations, and SPM levels did so as well. High vehicle movement, natural dust, dust storms, excessive vehicle traffic, and other factors may be to blame for the research area's high particulate matter levels. SPM and RSPM concentration were extremely high at Waluj MIDC, C.A.D.A., SBES and Collector Office. College, The existence of industrial areas nearby,

strong vehicle traffic, high traffic densities, and natural dust are possible

causes of the increased levels of particulate matter in these areas.

3.1.Concentration of pollutant at various stations in Aurangabad:

Table 3.: Concentration of Pollutant at Station Waluj MIDC (Industrial Area) January to April 2022.

Month/Pollutant	SOx µg/m³	NOx µg/m ³	RSPM µg/m ³
January-2022	18.36	7	100.5
February-2022	20.27	9	114.47
March-2022	28.29	9	82.86
April-2022	22.73	9	88.2

Table 4.: Concentration of Pollutant at Station C.A.D.A (Residential Type) January to April 2022.

Month/Pollutant	SOx µg/m ³	NOx μg/m ³	RSPM μg/m ³	SPM μg/m ³
January-2022	26.17	62.83	97	304.33
February-2022	27	60.8	113	311.8
March-2022	25	57.1	116.6	324.9
April-2022	14	29.88	111.75	307.25

Table 5. : Concentration of Pollutant at Station SBES (Residential Type) January to April 2022.

Month/Pollutant	SOx µg/m ³	NOx μg/m ³	RSPM μg/m ³	SPM μg/m ³
January-2022	26	62.5	110.5	309.17
February-2022	27.8	61.6	122.2	332
March-2022	25.56	57.78	121.78	337.33
April-2022	15	30.88	114.25	302

Table 6.: Concentration of Pollutant at Station Collector Office (Residential Type) January to April 2022

Month/Pollutant	SOx µg/m ³	NOx µg/m ³	RSPM µg/m ³	SPM μg/m³
January-2022	25.71	61.57	90.57	287
February-2022	27.17	61	110.17	310.67
March-2022	25.5	59.12	115.5	319.62
April-2022	12.7	28.7	108	304.5

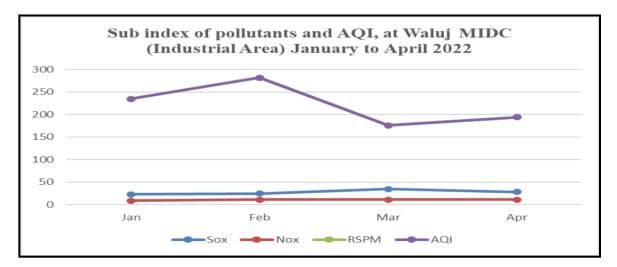
3.2 Sub indices of pollutants and AQI at various Stations in Aurangabad: Table 7.: Sub indices of pollutants and AQI, at Waluj MIDC (Industrial Area) January to April 2022

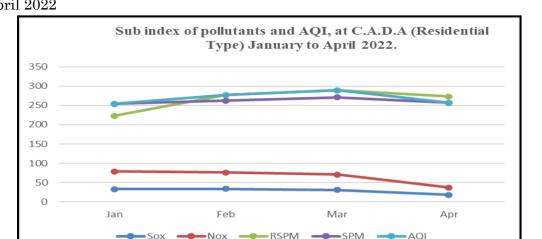
Months/Pollutant	SOx	NOx	RSPM	AQI
January-2022	23	9	235	235
February-2022	25	11	282	282
March-2022	35	11	176	176
April-2022	28	11	194	194

Table 8.: Sub indices of pollutants and AQI, at C.A.D.A (Residential Type) January toApril2022

Month/Pollutant	SOx	NOx	RSPM	SPM	AQI
January-2022	33	79	223	254	254
February-2022	34	76	277	262	277
March-2022	31	71	289	271	289
April-2022	18	37	273	257	257

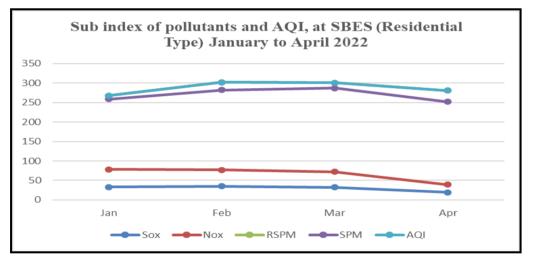
Table 9.: Sub indices of pollutants and AQI, at SBES (Residential Type) January to April 2022


Month/Pollutant	SOx	NOx	RSPM	SPM	AQI
January-2022	33	78	268	259	268
February-2022	35	77	302	282	302
March-2022	32	72	301	287	301
April-2022	19	39	281	252	281


Table 10.: Sub indices of pollutants and AQI, at Collector Office (Residential Type) January to April 2022.

Month/Pollutant	SOx	NOx	RSPM	SPM	AQI
January-2022	32	77	202	237	237
February-2022	34	76	267	261	267
March-2022	32	74	285	270	285
April-2022	16	36	260	255	260

3.3 Graphical representation of Sub indices of pollutants and AQI at various Stations in Aurangabad:


Figure 2.: Sub indices of pollutants and AQI, at Waluj MIDC (Industrial Area) January to April 2022.

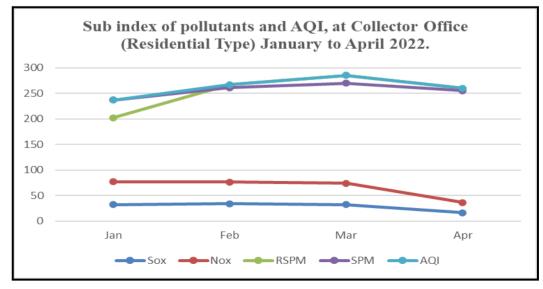
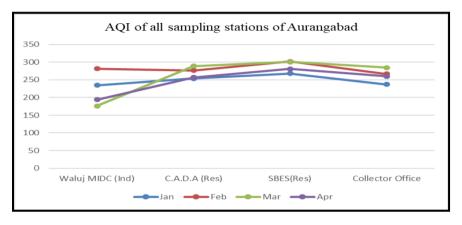


Figure 3.: Sub indices of pollutants and AQI, at C.A.D.A (Residential Type) January to April 2022

Figure 4.: Sub indices of pollutants and AQI, at SBES (Residential Type) January to April 2022.

Figure 5.: Sub indices of pollutants and AQI, at Collector Office (Residential Type) January to April 2022.



Mohamad Hanif Sherkhan Pathan

Table 11.: Comparative Air Quality Indices of all stations of Aurangabad								
Month/Pollutant	Waluj MIDC (Ind)	C.A.D.A (Res)	SBES(Res)	Collector Office				
January-2022	235	254	268	237				
February-2022	282	277	302	267				
March-2022	176	289	301	285				
April-2022	194	257	281	260				

3.4 Comparative study of AQI of all sampling stations:

Figure	6 · C	omnarative	study o	f AQI	of all	sampling	stations	at Aurangabad
Inguic	u U	omparative	study 0	1 TQL	or an	sampring	502010115	at mangabau

4. Conclusion:

The concentration of particle matter (RSPM & SPM) in the air is steadily rising, which is the main source of air pollution in Aurangabad city. The increasing number of automobiles in the study area is the main cause of air pollution. Particulate particles can cause chronic bronchitis and other respiratory conditions when inhaled in high amounts. The size of the particulate matter affects the impact to a different extent. While fine particles are deposited in the deeper sections of the lungs, coarse particles have a negative impact on the lung system. The findings show that among all the monitored stations, SBES college station has the worst Air Quality Index and is the most contaminated station. The remaining three stations, Waluj MIDC, C.A.D.A., and Collector Office, have low air quality indices. All sample stations' AQI values show a steady rise in the amount of pollutants in the air in Aurangabad, which is degrading air quality. The places in question have poor to very bad air quality.

5. Suggestions to control air pollution:

Public involvement and awareness are required for improving the air quality. Maintaining the vehicles properly i.e., getting PUC checks. replacing car air filters on time. maintaining proper tire pressure, follow lane discipline and speed limits, turn off engines at traffic signals when it is red will help reducing air pollution. As the study area shows poor to very poor air quality index people have to minimize travel, promote mass transportation or public transportation instead of individual transportation in order to improve air quality.

Acknowledgement:

Authors are deeply grateful to the Maharashtra Pollution Control Board for providing data for the present study. We are also expressing their deep gratitude to Central Pollution Control Board for providing assistance and

guideline for the calculation of AQI in the study.

References:

- K. Zhang, Y. Chen, and L. Wu, "Grey Spectrum Analysis of Air Quality Index and Housing Price in Handan," *Complexity*, vol. 2019, pp. 1–6, Nov. 2019, doi: 10.1155/2019/8710138.
- G. Onkal-Engin, I. Demir, and H. Hiz, "Assessment of urban air quality in Istanbul using fuzzy synthetic evaluation," *Atmospheric Environment*, vol. 38, no. 23, pp. 3809–3815, 2004.
- D. Schwela, "Air Pollution and Health in Urban Areas," *Reviews on Environmental Health*, vol. 15, no. 1–2, Jan. 2000, doi: 10.1515/REVEH.2000.15.1-2.13.
- 4. A. Purohit, P. Chauhan, M. Vyas, D. A. Vyas, and D. S. K. Singh, "AIR QUALITY INDEX DETERMINATION OF COMMERCIAL AREAS OF JODHPUR CITY: A CASE," vol. 4, no. 12, p. 4, 2017.
- 5. N. K. Rai, T. Sharma, and A. Vyas, "AIR QUALITY INDEX DETERMINATION OF RESIDENTIAL AREASOF JODHPUR CI TY: A CASE STUDY," p. 3.
- 6. "01_Aurangabad_Action_plan_Indus trial_Cluster_Report_JUNE_2017_0 8082019.pdf." Accessed: Aug. 20, 2022. [Online]. Available: https://www.mpcb.gov.in/sites/defaul t/files/pollution-index/industrialclusture/01_Aurangabad_Action_pla n_Industrial_Cluster_Report_JUNE 2017 08082019.pdf
- 7. "FINAL-REPORT_AQI_.pdf." Accessed: Aug. 20, 2022. [Online]. Available: https://app.cpcbccr.com/ccr_docs/FIN AL-REPORT_AQI_.pdf
- R. Nigam, K. Pandya, A. J. Luis, R. Sengupta, and M. Kotha, "Positive effects of COVID-19 lockdown on air quality of industrial cities

(Ankleshwar and Vapi) of Western India," *Sci Rep*, vol. 11, no. 1, p. 4285, Dec. 2021, doi: 10.1038/s41598-021-83393-9.

9. A. Chauhan, M. Pawar, R. Kumar, and P. C. Joshi, "Ambient Air Quality Status in Uttarakhand (India): A Case Study of Haridwar And Dehradun Using Air Quality Index," p. 14.