
International Journal of Advance   ISSN – 2347-7075 

and Applied Research (IJAAR)   Impact Factor – 7.328  

Peer Reviewed Bi-Monthly         Vol.9 No.4 Mar – Apr 2022
              

www.ijaar.co.in 
1061 

 

AN OVERVIEW OF COMPUTATIONAL STUDIES 

CONCERNING THE DEVELOPMENT OF TUMORS 
 

Ms. Dingankar Niha 

Noormohammad Shabana 

Ph.D. Research Scholar, 

Department of Computer Science  

and Engineering, 

Shri. J.J.T.U., Rajasthan, India. 

Dr. Vinod Vaze 

Ph.D. Guide, 

Department of Computer Science  

and Engineering, 

Shri. J.J.T.U., Rajasthan, India. 

 

 

ABSTRACT: 

The study of cancer biology entails intricate and ever-

changing interactions between cancer cells and the tissue 

microenvironments in which they are located. The consequences of 

a single cell on the clinical development are of crucial importance. It 

is possible for normal physiological processes to be co-opted by 

chemical and mechanical communication between tumour and 

stromal cells in order to enhance growth and invasion. The 

heterogeneity of cancer cells enhances the disease's capacity to try 

out new tactics for coping with the pressures of its immediate 

environment. Both hypoxia and therapy have the potential to select 

for cancer stem cells, which then drives both invasion and 

resistance. Cell-based computational models, which are also known 

as discrete models, agent-based models, or individual-based models, 

are used to simulate individual cells as they interact in virtual 

tissues. This enables us to investigate how single-cell behaviours 

contribute to the dynamics that we observe and work to control in 

cancer systems. Within the scope of this study, we will go through a 

wide variety of approaches that are currently accessible for cell-

based computational modelling. The techniques may vary from 

extremely detailed models of just a few cells and their morphologies 

to models consisting of millions of simpler cells arranged in three-

dimensional tissue. The modelling of individual cells enables us to 

immediately transform discoveries made in biological research into 

simulation rules. In many situations, individual cell agents contain 

molecular-scale models. We are able to relate the development of 

cancer to the circumstances of the microenvironment because to the 

majority of models' ability to mimic the movement of oxygen, 

medicines, and growth factors. Examples from cancer hypoxia, 
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angiogenesis, invasion, stem cells, and immunosurveillance are 

used throughout this article to highlight the various strategies. 

Keywords: Computational analysis, Growth, Tumor 

 

INTRODUCTION: 

Cancer is a difficult problem to solve because it entails complicated 

interactions between cancer cells and the tissue microenvironments in which 

they are located. Therapeutic techniques that concentrate only on cancer cells 

typically result in unsatisfactory results, such as therapy ineffectiveness, cancer 

cell resistance, and invasion of surrounding tissues. These failures may be 

attributed, at least in part, to the unexpected behaviours that manifest 

themselves from the dynamical systems of cancer tissues. Therapies exert a 

selection pressure, even as cancer cells take use of the increased genetic diversity 

available to them in order to test a variety of survival strategies and adapt. 

Chronic hypoxia is another kind of selective pressure that may cause metabolic 

alterations, the selection of cancer stem cells that are resistant to therapy, 

invasion, and angiogenesis. Because of their ability to interact both 

biochemically and biomechanically with the surrounding stromal cells, tumour 

cells are able to hijack normally occurring physiologic processes. Mathematical 

models can serve as "virtual laboratories" with fully controlled conditions, 

allowing scientists and clinicians to investigate the emergent clinical behaviours 

that result from basic cell hypotheses and to evaluate new therapeutic strategies. 

In these "virtual laboratories," scientists and clinicians can investigate the 

emergent clinical behaviours that result from basic cell hypotheses.  

This article provides an overview of the cell-based techniques that are 

used to simulate cancer. Cell-based models are a kind of model that simulates 

the actions of individual cells within their respective tissue contexts. These 

models are also known as discrete models, agent-based models, or individual-

based models. These devices provide a number of distinct benefits. Each cell 

agent is capable of tracking a totally autonomous state with distinct 

characteristics that represent the heterogeneity that is present in cancer. Run 

simulation experiments that explore the emergent behaviours of these 

hypotheses. Compare against new data to confirm, reject, or iteratively improve 

the underlying hypotheses. Modelers can directly implement cell rules that 
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reflect observations of single-cell behaviour and cell-cell interactions. This allows 

us to translate biological hypotheses to mathematical rules quickly.  

 

A SURVEY OF CELL-BASED MODELING METHODS: 

Cell-based models may be broken down into two basic paradigms: lattice-

based models, which monitor cells along a rigid grid, and off-lattice models, 

which do not have this limitation. Both of these models represent individual 

cells. The majority of cell-based modelling methodologies are broken out in 

Figure 1. The most popular open-source modelling software are outlined. 

Lattice-Based Methods: 

Both regular structured meshes (such as Cartesian11 [two- or three-

dimensional [2D/3D], dodecahedral [3D]) and unstructured meshes may be used 

in lattice-based models. Structured meshes are easier to design, display, and 

integrate with partial differential equation (PDE) solvers than unstructured 

meshes, however the structure of structured meshes may lead to grid biases. 

Unstructured meshes provide a potential solution to these problems13, but at 

the expense of increased complexity. 

We are able to further classify lattice-based approaches depending on the 

spatial resolution that they provide. The cellular automaton (CA) modelling 

technique allows for a single cell to occupy each lattice location. 14-17 Each cell 

is given an update based on discrete lattice-based rules at each time step. These 

rules may be summarised as follows: stay, migrate to an adjacent lattice site, die 

(free a lattice site), or divide to deposit a daughter cell in a nearby site. The 

lattice sites are often updated in a randomised sequence using these approaches 

in an effort to eliminate grid artefacts.  

Instead of tracking the movements of each individual cell, LGCA models 

count the number of cells that pass through channels between individual lattice 

locations. This makes analysis easier and offers a bridge to continuum 

approaches that represent cell densities or populations rather than single cells. 

They are able to simulate extremely large numbers of cells effectively over 

extended periods of time while also relating to the theory of statistical 

mechanics. 

The resolution of some issues may involve an examination of the 

morphology of individual cells. Cellular Potts models, often known as CPMs, 

depict each cell by using a number of different attice sites. CPMs go to each pixel 
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(2D) or voxel (3D), try a random swap with an adjacent pixel/voxel, then approve 

or reject the swap (probabilistically) based on whether it would lower a global 

energy. This process occurs at each time step. CPMs are much more 

computationally demanding than CA models despite the fact that they can 

represent cell morphologies and mechanics that cannot be integrated in CA 

models. In addition, the process of calibrating Monte Carlo steps to actual 

physical time may be difficult.  

Off-Lattice Methods: 

Off-lattice models may be broken down into two categories: center-based 

models (CBMs), which concentrate on cell volumes (or masses), and models, 

which concentrate on cell borders. These methods may be further categorised 

based on the amount of morphologic information they include.CBMs monitor the 

location of the centre of mass or volume of each cell, often via the use of a single 

software agent for each cell. 

There are many different CBMs, and some of them depict cell volumes 

directly, while others just show cells as dots. In most cases, CBMs will update 

the locations of the cells by stating explicitly the adhesive, repulsive, locomotive, 

and drag-like forces that are transferred between cell centres. The vast majority 

of CBMs model cells as spheres; however, other models model cells as deformable 

ellipsoids in order to more accurately portray the morphologies of the cells. By 

dividing cells up into their constituent subcellular pieces, CBMs are able to 

mimic the shape of cells in more detail. Multiple center-based agents, which may 

interact with both adhesive and repulsive forces, are used to represent each cell. 

These models provide a closer approximation of the biomechanics of cells; 

however, this comes at the expense of increasing computing cost. On the other 

hand, cells may be grouped together into clusters or functional units (such as 

breast glands or colon crypts), which can then be mimicked as agents that 

interact with one another via the use of mechanical forces or other rule-based 

movements. Modelers are now able to include diverse information into individual 

clusters of cells while yet achieving higher levels of computing efficiency than 

was previously possible with conventional CBMs. 
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Boundary-tracking models: 

Vertex-based approaches (for example, Fletcher et al28) describe cells as 

polygons (2D) or polyhedra (3D) and calculate the forces that act on their 

vertices. These methods are especially helpful for modelling confluent tissues. 29 

Front-tracking approaches, such as the immersed boundary method (IBM), solve 

partial differential equations (PDEs) for fluid flow within and between cells, and 

then advect boundary points along the membranes of the cells in response to this 

flow. This allows for increased spatial resolution. 30 Level set approaches have 

been employed to implicitly monitor the movement of cell boundaries31, and 

VCell (see Connecting to Molecular Effects) has recently introduced front-

tracking capabilities. Both of these techniques have been applied. 32,33 These 

cell-based approaches are among the most computationally costly, yet they are 

helpful for linking precise cell mechanics to fluid and solid tissue mechanics. 

Connecting to Molecular Effects: 

The vast majority of cell-based models are of the hybrid discrete-

continuum kind; that is, they marry a discrete cell model with continuum models 

of the microenvironment. In general, these models replicate the biotransport of 

oxygen, growth hormones, and medications via the use of reaction-diffusion 

PDEs. BioFVM was created by Ghaffarizadeh et al. in order to address the 

diffusive transport of tens to hundreds of chemical substrates in three-

dimensional tissues. It is the fundamental PDE solver for PhysiCell (a center-

based simulation framework). 21 Modelers will construct rules within this 

framework to tie the phenotypes of individual cells to the circumstances of the 

local chemical substrate.  
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Ordinary differential equations (ODEs) are a component of many discrete 

models, which are used to simulate the molecular processes that occur in 

individual cells. 

VCellis able to simulate the reacting flows of many proteins within a single 

detailed cell and many modelling packages support systems biology markup 

language (SBML) to include systems of ODEs that simulate molecular effects in 

individual cells. Others use discrete models within individual agents. Gerlee and 

Anderson used small neural networks to simulate individual cell phenotypic 

"decisions" on the basis of microenvironmental inputs. On the other hand, 

PhysiBoSS combines the Boolean network modelling approach of MaBoSSwith 

PhysiCell to simulate molecular processes in individual cells. 

 

EXAMPLES OF CELL-BASED MODELING IN CANCER BIOLOGY: 

Moving further, we will investigate a number of modeling topics that 

exemplify the use of cell-based modeling in cancer biology. Despite the fact that 

we are unable to conduct a comprehensive review of all cell-based modeling in 

cancer (or even sample all major use cases for cell-based modeling), these themes 

have been compiled from a variety of research areas to illustrate scientific 

problems that have significant effects at the cell scale and for which cell-based 

models have the potential to provide novel insights. 

In order to examine tumour development in hypoxic tissues and, more 

broadly, the influence of diffusive transport constraints, a number of different 

groups have developed cell-based models. CAs were used in the studies by 

Gatenby et al. and Small bone et al. in order to investigate hypoxia-driven shift 

to invasive phenotypes in ductal cancer in situ (DCIS). They integrated 

metabolic adaptations of cells to hypoxia, which made it possible for them to 

investigate early stages of tumour invasion. Anderson and colleagues expanded 

prior CA results by adapting IBCell30 (an IBM) to mouse mammary (EMT6/Ro) 

tumour cell proliferation in hypoxic tissues. This was done in order to extend 

earlier CA findings. They discovered, just as they had previously, that hypoxic 

gradients might promote tissue invasion. However, because to IBCell's enhanced 

modeling of cell adhesion and biomechanics, they expected more rounded 

invasive points. (Fig 2B) Macklin et al.50 and Hyun and Macklin51 used a CBM 

to analyse oxygen-driven proliferation and necrosis in solid-type DCIS with 

comedonecrosis. Both groups found that the CBM was effective in their research. 
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They were able to simulate comedonecrosis and micro calcifications as emergent 

properties of the simulations along with realistic, constant rates of tumour 

advancement along the breast ducts after calibrating to individual patient 

pathology data (tissue specimens immunostained for the Ki protein to detect 

cycling cells, cleaved caspase 3 to detect apoptosis, and annotated with viable 

rim sizes and cell density). This was accomplished by simulating comedonecrosis 

Ghaffarizadeh et al. improved the DCIS model by extending it to three 

dimensions and simulating the hypoxic interiors of hanging drop spheroids while 

calibrating their parameters to match the birth and death dynamics of MCF-10A 

cells in culture (Figs 2C and D). They hypothesised that the cells would have a 

layered structure, with an outside proliferative ring enclosing a quiescent 

perinecrotic zone and an internal necrotic core, similar to the early 3D work that 

Drasdo and Hohme 48 had done on EMT6/Ro cells (Fig 2E). They were the first 

to predict networks of fluid-filled pores in the necrotic cores, which emerge from 

the competing effects of necrotic cell shrinking and adhesion; these structures 

are observed in experimental models. Necrotic cell shrinkage and adhesion are 

two effects that compete with one another (Fig 2D inset). The researchers 

Szymanska et al. 49 employed a cultured biological model (CBM) consisting of 

EMT6 cells to imitate a developing tumour cord. A tumour cord is a solid tumour 

that forms around a blood artery. They hypothesised that there would be a 

similar three-layer structure, but in the opposite order: a necrotic outer, a 

quiescent interior, and a growing core close to the blood artery (Fig 2F). 
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TUMOR-INDUCED ANGIOGENESIS AND DRUG DELIVERY: 

Sprouting angiogenesis was modelled by colleagues using a CA model of 

vessel tip movement, which included the following: Sprout tip agents migrated in 

the direction of hypoxic tumour locations by following chemotactic and 

haptotactic signals, leaving behind a trail of functioning vasculature as they did 

so. They used this framework to investigate the possibility of therapeutic 

delivery from vasculatures associated with tumours. This framework included 

the incorporation of a detailed vascular network flow model, which included 

dynamic wall shear stress rules for vessel branching and anastomosis (vessel 

looping) (Fig 3A).  

 

Fig. 2: Cancer Stem Cells 

 

Models of cancer stem cells, often known as CSCs, provide very useful 

insights into the factors that are driving the biology of cancer. In order to 

investigate the involvement of stem cells (which are located at the bottom of the 

crypt) in the development of colorectal cancer, Fletcher and colleagues 

constructed a 3D CBM of colonic crypts. The division of stem cells and their 

differentiation were directed by Wnt gradients that ran down the crypt axis. 

Neighboring cells were linked to one another by linear springs. An overall base-

to-top proliferative cell flow was produced as a result of the architecture of the 

stem-cell hierarchy, which consisted of proliferation at the crypt base, expansion 

and differentiation along the middle, and differentiation at the top. Unless the 

mutation takes place in a stem-cell niche, this flux exerts an anticancer 

preventive effect by expelling any mutant cell and its children from a crypt 

before they are able to spread throughout the crypt. This is the case even if the 

mutation takes place in a stem-cell niche. 
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In order to investigate the dynamic relationship that exists between triple-

negative breast cancer and stromal cells, Norton et al. developed a 3D CA model. 

Cancer cells exchanged chemical signals with invading macrophages and 

fibroblasts while stem cells proliferated and differentiated into progenitor cells. 

Stem cells also proliferated and differentiated into progenitor cells. They 

observed, among other things, that increasing the stromal influence on cancer 

cell proliferation led to a smaller overall tumour size, but increasing the stromal 

effect on cancer cell migration led to a larger tumour size. This was one of their 

findings. 

 

CONCLUSION: 

Cancer invasion is critical to metastatic progression. In order to flee 

primary tumours and infiltrate neighbouring tissues (as theoretically portrayed 

in epithelial-to-mesenchymal transition [EMT]), penetrate and migrate through 

blood and lymphatic arteries, and eventually populate distant metastatic 

habitats, cancer cells develop a motile phenotype. Due to the importance of 

single-cell effects, several cell-based models have been developed to examine 

cancer invasion, either with or without the inclusion of explicit modelling of 

EMT. The LGCA model was developed to mimic the consequences of 

heterogeneous cell-cell adhesion in an epithelial layer. One of the outcomes of 

epithelial-to-mesenchymal transition (EMT) is a reduction in cell-cell adhesion. 

To mimic cell-cell adhesion, we varied both the starting number and the 

maximum number of adhesion receptors that were present in each virtual cell. 

They discovered that higher adhesion heterogeneity led to enhanced dispersion, 

as did decoupling receptor number from environmental signals (cell-cell 

interaction). 
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