<u>www.ijaar.co.in</u>



Impact Factor – 7.328



ISSN - 2347-7075 Peer Reviewed Vol.10 No.3

Bi-Monthly January – February 2023

# CHARACTERIZATION OF A-DISTRIBUTIVE SEMILATTICES

Anushka A. Patil<sup>1</sup> & Ashitosh P. Patil<sup>2</sup>

 <sup>1</sup> Padmabhooshan Vasantraodada Patil Institute of Technology, Budhgaon (Sangli) Maharashtra, India.
 <sup>2</sup> Bhrati Vidypeeth Institute of Technology (Poly), Kolhapur Maharashtra, India. Corresponding Author - Anushka A. Patil Email - drmanishapatil23@gmail.com DOI - 10.5281/zenodo.7678150

#### Abstract:

In this paper, we defined a-distributive semilattice and obtain properties of adistributive semilattice in terms of a-ideals and â-filter. Also we have obtain several characterizations of a-distributive semilattice.

Key Words: a-distributive semilattice, a-ideals, â-filter

#### Introduction:

0-distributive lattice concept introduced bv Varlet. Then P. Balasubramani and P. Venkatanarasimhan have obtain many characterizations with the help of ideal, filter, prime ideal, minimal prime ideal etc. A lattice L with 0 is called a 0-distributive lattice if for all a, b,  $c \in L$  with  $a \land b = 0$  and  $a \land c = 0$  imply  $a \wedge (b \vee c) = 0$ . Any distributive lattice with 0 is 0 - distributive. In this paper we will study the a-distributive meet Semilattices. Y. S. Pawar and M. V. Patil introduced the concept a - distributive lattice for any fixed element  $a \neq 1$  in bounded lattice. Also defined a-ideal, prime a-ideal, minimal prime a-ideal and â-filter, etc. and obtain many characterization. Any a - distributive lattice is 0 – distributive. In this paper we generalized concept a-distributive lattices to a-distributive semi lattices. Also we introduced a-ideal, prima-ideal, minimal prime a-ideal and â-filter in a-distributive semi lattices.

Let S be a meet semilattice with 0. Let a, b, c in S be such that whenever  $\mathbf{b} \lor \mathbf{c}$  exists,  $\mathbf{a} \land \mathbf{b} = \mathbf{0}$  and  $\mathbf{a} \land \mathbf{c} = \mathbf{0}$ imply  $\mathbf{a} \land (\mathbf{b} \lor \mathbf{c}) = \mathbf{0}$ , then S is called 0distributive semilattice. We generalized adistributive semilattice as x, y, z, a (a  $\neq$ 1) in S be such that whenever  $\mathbf{y} \lor \mathbf{z}$  exists,  $\mathbf{x} \land \mathbf{y} \le \mathbf{a}$  and  $\mathbf{x} \land \mathbf{z} \le \mathbf{a}$  imply  $\mathbf{x} \land$  $(\mathbf{y} \lor \mathbf{z}) \le \mathbf{a}$ .

The Hasse figure given below is example of a-Distributive Semilattice.

Vol.10 No.3

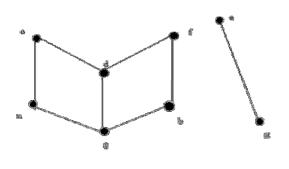


Fig. 1

The following figure shows that adistributive semilattice need not be distributive.

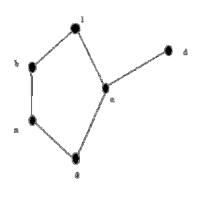
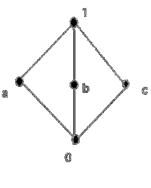


Fig. 2

The following figure is example of semilattice is not a- distributive.





An ideal I in S is a non-empty subset of S such that  $a \le b$ ,  $b \in I$  implies  $a \in I$  and whenever avb exists for a, b in I *Anushka A. Patil & Ashitosh P. Patil*  then a v b  $\in$  I. (see Venkatanarasimhan [1]). A proper ideal I in S is called prime if x  $\land$  y  $\in$  I implies that either x  $\in$  I or y  $\in$  I.

Varlet [5] has generalized the concept of maximal filters and introduce a - maximal filter in L. Thus maximal  $\hat{a}$  - filter in M is a filter in L which is maximal with respect to not containing the given fixed element a ( $\neq 1$ ) in L. An  $\hat{a}$  - filter is a filter in L not containing a . In this chapter we introduce the concepts of semi a - ideal , a - ideal , prime semi a - ideal and minimal prime a - ideal etc. in S. We begin with simple but essential concepts.

#### **Definition and Properties:**

Definition 2. 1: - A non-empty subset I of S is semi- ideal in L if  $x \le y, y \in I$ imply  $x \in I$  for x, y in S.

Definition 2.2: - A semi-ideal in S containing the element a is called semi a - ideal.

Definition 2. 3: - A prime semi-ideal in S containing the element a is called prime semi a - ideal.

Definition 2.4: - An ideal in S which is maximal w. r. t containing the element a is called maximal a - ideal.

Definition 2.5:- Minimal element in the set of all prime a - ideals in S is called minimal prime a - ideal.

### IJAAR

Vol.10 No.3

Note that for a = 0 in particular, the above definitions 1 to 5 coincide with the usual definitions of semi-ideal, prime semi-ideal, maximal ideal, minimal prime ideal respectively ( see Venkatanarasimhan [1]).

We begin with a rather elementary result the easy proof of which is omitted.

While proving the properties of prime semi ideals, Venkatanarasimhan [1] has proved that, a nonempty subset F (F  $\neq$  1) of L is filter if only if (L \F) is prime semi - ideal.

More generally, we prove

**Theorem 2.1:** - A non - empty subset F of S ( $F \neq 1$ ) is  $\hat{a}$  - filter if and only if ( $S \setminus F$ ) is prime semi a - ideal.

Proof:- only if part.

let F be  $\hat{a}$  - filter in S. As  $a \notin F$  we get  $a \in (S \setminus F)$ . Hence  $(S \setminus F)$  is non-empty. Let  $x \leq y$  and  $y \in (S \setminus F)$ . Suppose  $x \notin (S \setminus F)$  we get  $x \in F$ . But as F is filter we get  $y \in F$ ; a contradiction. Therefore  $x \in (S \setminus F)$ . Hence  $(S \setminus F)$  is semi a - ideal in S.

If  $x \land y \in (S \setminus F)$  then  $x \land y \notin F$ . As F is filter, either  $x \notin F$  or  $y \notin F$ . Thus  $x \in (S \setminus F)$  or  $y \in (S \setminus F)$ . This shows (S \F) is prime semi a - ideal.

If part.

Anushka A. Patil & Ashitosh P. Patil

Let  $(S \setminus F)$  be prime semi a - ideal in 1. To prove that F is  $\hat{a}$  - filter.

(i) As  $a \in (S \setminus F)$  we get  $a \notin f$  and hence F is non-empty.

(ii) Let  $x \le y$  and  $x \in F$ . Suppose  $y \notin F$ . Then we get  $y \in (S \setminus F)$ . But as  $(S \setminus F)$  is semi-ideal we get  $x \in (S \setminus F)$ ; a contradiction. Thus  $y \in F$ .

(iii) Let x, y ∈ f. Then x, y ∉ (S \ F)
As (S \ F) is prime semi ideal we get x
∧ y ∉ (S \ F) .i.e. x ∧ y ∈ F. From (i), (
ii) and (iii) we get F is filter in S. As
a ∉ F we get F is â - filter.

**Theorem 2.2**:- Any  $\hat{a}$  - filter in S is contained in some maximal  $\hat{a}$  - filter.

Proof: - Let F be  $\hat{a}$  - filter in S. Define K = { J | J is an  $\hat{a}$  - filter in L containing F } . As F  $\in$  K we get K is non-empty. Let  $\xi$ be any chain in K and X =  $\cup$  C  $\in \xi$  C . Then obviously, X is filter in S as X is union of members of chain of filters in S. Further as F  $\subseteq$  X and a  $\notin$  X.

We get  $X \in K$ . By Zorn's Lemma, there exists a maximal element M in K. This M is maximal  $\hat{a}$  - filter containing F.

**Theorem 2.3:-** Let F be  $\hat{a}$  - filter in S. Then F is maximal  $\hat{a}$  - filter if and only if for  $x \notin F$  there exists  $y \in F$  such that  $x \land y \leq a$ .

Proof: - Only if Part.

Let F be maximal  $\hat{a}$  – filter in S and  $x \notin F$ .

Then  $F \lor [x]$  is filter such that  $F \sqsubset F \lor [x]$ . But as F is maximal  $\hat{a}$  - filter we get  $a \in F \lor [x]$ . This implies  $a \ge x \land y$  for some  $y \in F$  and the result follows.

If Part.

Let F be any  $\hat{a}$  - filter in S satisfying the condition in the statement. Now we prove F is maximal  $\hat{a}$  - filter in S. Let if possible there exists  $\hat{a}$  - filter J in L such that F  $\subset$ J  $\subseteq$  S. As F  $\subset$  J, there exists x  $\in$  J such that x  $\notin$  F. By assumption, there exits y  $\in$ F such that x  $\land$  y  $\leq$  a. Now F  $\subset$  J and y  $\in$ F imply y  $\in$  J. As x  $\in$  J, y  $\in$  J we get a  $\in$ J; a contradiction. Hence F is maximal  $\hat{a}$  filter in S.

### **Characterizations:-**

In the following theorem we characterize a - distributive lattices in terms of a - ideals in S.

Theorem 3. 1:- The following statements are equivalent in S. 1. S is a - distributive semi lttice. 2. If x,  $y_1$ ,  $y_2$ , ...,  $y_n$  in L such that x  $\land y_i \leq a, \forall i, 1 \leq i \leq n$ , then x  $\land [y_1 \lor y_2 \lor ... \lor y_n] \leq a$  if  $y_1 \lor y_2 \lor ... \lor y_n$  exists.

3. If A is a - ideal and  $\{A_i | i \in I\}$  is a family of a - ideals such that  $A \cap A_i \subseteq (a_i)$ , for all  $i, 1 \le i \le n$ , then  $A \cap [\vee_i \in I A_i] \subseteq (a_i)$ . Proof:-

 $(1) \Rightarrow (2)$ 

As S is a - distributive, the result is true for n = 2. Using the induction on n, the implication follows.

(2)  $\Rightarrow$  (3) let a be a - ideal and { a i | i  $\in$  i } be a family of a - ideals such that

$$\begin{split} A &\cap A_i \subseteq (a], \text{ for all } i, 1 \leq i \leq n. \text{ If } \\ x &\in a \ \cap [ \lor_{i \in i} a_i ], \text{ then } x \in a \text{ and } x \\ &\in \lor_{i \in i} A_i. \text{ As } x \in \lor_{i \in i} A_i \text{ we get } x \leq \\ y_1 &\lor y_2 \lor \ldots \lor y_n \text{ for some finite } n \text{ with } \\ y_i &\in a_i \text{ for all } i, 1 \leq i \leq n \text{ if } y_1 \lor y_2 \\ &\lor \ldots \lor y_n \text{ exits. As } x \in A \text{ and } y_i \in A_i \\ &\text{we get } x \land y_i \in A \ \cap A_i \subseteq (a]. \end{split}$$

Therefore  $x \land y_i \le a$ , for all  $i, 1 \le i$   $\le n$ . Hence by assumption (2),  $x \land [y_1 \lor y_2 \lor ... \lor y_n] \le a$ . Thus  $x \le a$ . This shows  $A \cap [\lor_{i \in I} A_i]$   $] \subseteq (a]$  and the implication follow. (3)  $\Rightarrow$  (1) To prove that S is a - distributive. Let  $x \land y \le a, x \land z \le a$  for x, y, z in S. But this turn imply  $(x] \land (y] \subseteq (a]$  and

 $(x] \land (z] \subseteq (a]$ . By assumption (3), we get

 $(x] \land ((y] \lor (z]) \subseteq (a]$ . Thus x  $\land (y \lor z) \le a$  as

 $(x] \land ((y] \lor (z]) = (x \land (y \lor z)].$ 

Hence S is a - distributive lattice.

Thus  $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$  shows

Anushka A. Patil & Ashitosh P. Patil

that all the statements are equivalent .

Theorem 3. 2:- S is a - distributive if and only if every maximal â - filter is prime.

#### **Proof: - Only if Part.**

Let S be a - distributive semilattice and M be any maximal â - filter .

To prove M is prime . Let if possible there exist x, y in L such that  $x \lor y \in$ M with  $x \notin M$  and  $y \notin M$ . As M is maximal  $\hat{a}$  - filter,  $a \in M \lor [x]$  and  $a \in$  $M \lor [y]$ . Then  $a \ge m_1 \land x$  and  $a \ge m_2$  $\land y$  for some  $m_1, m_2 \in M$ . But then  $a \ge$  $m_1 \land m_2 \land x$  and  $a \ge m_1 \land m_2 \land y$ will imply  $a \ge (m_1 \land m_2) \land (x \lor y)$ y by a-distributive of S. But as  $m_1 \land$  $m_2 \in M$  and  $x \lor y \in M$  we get  $a \in M$ ; a contradiction. Thus  $x \lor y \in M$  must imply  $x \in M$  or  $y \in M$ . This proves that M is prime.

If Part.

Assume that every maximal â - filter in S is prime. To prove that S is

a - distributive semi lattice. Let if possible there exist x, y, z in S such that  $x \land y \le a$ ,  $x \land z \le a$  with  $x \land (y \lor z)$ )  $\le a$ . Define  $F = [x \land (y \lor z))$ . Obviously, F is  $\hat{a}$  - filter in S. By Theorem 1.2.7, F is contained in some maximal  $\hat{a}$  - filter say M.But then  $x \land$ ( $y \lor z$ )  $\in$  M imply  $x \in$  M and  $y \lor z$  $\in$  M.M being prime, we get  $x \land y \in$ M or  $x \land z \in$  M. But in either the case  $a \in M$ ; a contradiction. Hence  $x \land y \leq a$ ,  $x \land z$  $\leq a \text{ imply } x \land (y \lor z) \leq a \text{ for } x, y$ , z in S. Hence L is a - distributive lattice.

#### 

A lattice L is distributive if and only if for x < y in L there exists a prime filter F containing x but not y. (see Gratzer [ 2], page 78). In the following theorem we prove a similar characterization for a distributive semi lattice.

Theorem 3. .3:- L is a - distributive if and only if for x ≰ a in L, there exists prime â - filter containing x.

### **Proof:- Only if Part.**

Let L be a - distributive lattice and  $x \leq a$ for some x in S. As [x) is â - filter. By Theorem 1.2.7, [x) is contained in maximal â - filter say M. S being a distributive, M is prime â - filter. This shows the existence of prime â - filter M containing x.

### If Part .

Suppose L is not a - distributive. Hence there exist x, y, z in L such that  $x \land y \le a, x \land z \le a$  with  $x \land (y \lor z)$  $\leq a$ . By hypothesis, there exits prime  $\hat{a}$  filter P containing  $x \land (y \lor z)$ . Then we get  $x \land y \in P$  or  $x \land z \in P$ ; P being prime  $\hat{a}$  - filter. But in either the case  $a \in P$ , contradicting the choice of P.

Anushka A. Patil & Ashitosh P. Patil

Thus  $x \land y \le a$ ,  $x \land z \le a$  must imply  $x \land (y \lor z) \le a$  for all x, y, z in L. Hence S is a – distributive semi lattice.

## **References:**

- Balasubramani P. And Venkatanarasimhan P. V: characterization of 0 - distributive lattices , indian. J. Pure appl. Math . 32 , 3 , 2001 , 315 - 324 .
- Gratzer G: lattice theory , First concepts and Distributive lattices, freeman and company , san francisco , 1971 .

- 3. Pawar Y. S. And Thakare N. K.:- 0
   istributive semi lattice, Cannad. Math. Bull. 21, 1978, 469 - 75.
- Patil M.V., Pawar Y.S., "Characterization of a- Distributive Lattices", International Journal of Mathematical Sciences, 2005, Volume 4, No. 2, pp 201-217.
- Varlet J. C: Relative Annihilators in Semi lattice, Bull. Austral. Math. Soc., 9, 1973, 169 -185 .5. Venkatanarasimhan P. V. :- Semiideals in Semi lattice, J. Colloq. Math., 30, 1974 , 203 - 212