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Abstract:

The theory of fixed point is one of the most important and powerful tools of the modern mathematics not
only it is used on a daily bases in pure and applied mathematics but it is also solves a bridge between analysis and
topology and provide a very fruitful are of interaction between the two.

Fixed Point Theory :

The theory of fixed points belongs to
topology, a part of mathematics created at the end of
nineteenth  century.  The  famous  French
mathematician H. Poincare (1854-1912) was the
founder of the fixed point approach. He had deep
insight into its future importance for problems of
mathematical analysis and celestial mechanics and
took an active part in its development. Fixed point
theory is a rich, interesting and exciting branch of
mathematics. It is relatively young but fully
developed area of research. Study of the existance of
fixed points falls within several domains such as,
classical analysis, functional analysis, operator
theory, general and algebric topology. Fixed points
and fixed point theorems have always been a major
theoretical tool in fields as widely apart as topology,
mathematical €conomics, game theory,
approximation theory and initial and boundary value
problems in ordinary and partial differential
equations. Moreover, recently, the usefulness of this
concept for applications increased enormously by
the development of accurate and efficient techniques
for computing fixed points, making fixed point
methods a major tool in the arsenal of mathematics.
Fixed point theory is equivalent to best
approximation, variational inequality and the
maximal elements in mathematical economics. The
sequence of iterates of fixed point theory can be
applied to find solution of a variational inequality
and the best approximation theory.

The theory of fixed points is concerned
with the conditions which guarantee that a map T :
X X of a topological space X into itself. admits one
or more fixed points that is, points x in X for which
X = Tx. For example, a translation, i.e. the mapping
T (X) = x + a for a fixed a, has no fixed point, a
rotation of the plane has a single fixed point (the
center of rotation), the mapping x x2 of R into itself
has two fixed points (0 and 1) and the projection of
R2 into the - axis has infinitely many fixed points
(all points of the -axis). Existence problems of the

type arise frequently in analysis. For example, the
problem of solving the equation p(z) = 0, where p is
a complex polynomial, is equivalent to find a fixed
point of the self maps of . More generally, if is
any operator acting on a subset M of a linear space
E, to show that the equation Du=0 has a solution,
is equivalent to show that the map has a fixed
point.The earliest fixed point theorem is that of
Brouwer [11], who in (1912), proved that a
continuous self mapping T of the closed unit ball
has at least one fixed point, that is, a point x such
that Tx = x. Several proof of this historic result can
be found in the existing literature.

Another fundamental result after Brouwer’s
fixed point theorem was given by polish
mathematicians S. Banach in (1922). Banach proved
a theorem, which ensures under appropriate
conditions, the existence and uniqueness of a fixed
point. This result is popularly known as “Banach
fixed point theorems” or the “Banach Contraction
Principle”. It states that a contraction mapping of a
complete metric space into itself has a unique fixed
point. It is the simplest and one of the most versatile
results in fixed point theory. Being based on an
iteration process, it can be implemented on a
computer to find the fixed point of a contractive
map, it produces approximations of any required
accuracy. Due to its applications in various
disciplines of mathematics and mathematical
sciences, the Banach contraction principle has been
extensively studied and generalized on many
settings and fixed point theorems have been
established.

There are a large class of mappings for
which fixed point theorems have been studied. It
includes contractive mappings, contraction of
various order mappings, Ciric contraction,
asymptotically regular, dencifying etc. Apart from
single mappings, pair of mappings, sequence of
mappings and family of mappings are also some of
the classes of mappings that have interested
mathematicians.There are many settings in which
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the fixed point theorems have been studied. Metric
spaces and its various generalizations, 2-metric
spaces, uniform and quasi-uniform spaces, Banach
spaces, normed spaces, 2-normed spaces, locally
convex spaces, uniformly convex spaces etc. are
some of the settings in which fixed point theorems
have been proved and their useful applications have
been found.Chu-Diaz [18] and Bryant [14] observed
that it is sufficient for some iterates to be a
contraction in order to get a unique fixed point.
Rakotch [78] and Boyd-Wong [10] have attempted
to generalize the Banach contraction principle by
replacing the lipschitz constant by some real valued
function whose value is less than one. But generally,
in order to accommodate a variety of continuous and
discontinuous functions, attempts were made to
replace the contractive conditions by some general
form of mapping condition (called generalized
contraction). In (1977), Rhoades [80] has made a
comprehensive study and compared various
contractive conditions which are scattered in the
literature. He also introduced some new definitions.
In (1978), Rhoades [81], enlarged his system, where
a number of definitions were duplicated by Fisher
work ([22], [23]). In (1980), Hededus [32] defined
the concept of generalized Banach contraction. In it
appeared the diameter of a non-finite set in the in
equality of definition, for the first time. This new
definition was the base of many generalizations.
These definitions were systematized by Park [68]. In
1992, Meszares [54] proved the equivalence of forty
three contractive definitions and many inclusion
relations. Recently, Rhoades [82] tried to obtain
general results from which a lot of already known
results follow as a corollary. He also obtained some
new results.On the other hand, in (1976), Jungck
[36] generalized the Banach contraction principle by
introducing a contraction condition for a pair of
commuting self mapping son metric space and
pointed out the potential of commuting mappings
for generalizing fixed point theorems in metric
spaces [37]. Jungck’s results have been further
generalized by considering general type of
contractive conditions on the pair of mappings by
Das and Naik [19], Kasahara [44], Park ([68], [69],
[70]), Ranganathan [79], Singh [95] and several
others. Further generalizations have also been
obtained by taking contractive type conditions for
three self mappings on a metric space — one of the
mappings commuting with other two by Qureshi and
Awadhiya [76], Bhola and Sharma [8], Khan and
Imdad [48], Fisher [26] etc.

In (1982) Sessa [88], initiated the tradition
of improving commutativity conditions in metrical
common fixed point theorems. While doing so Sessa
[88] introduced the notion of weak commutativity.
Motivated by Sessa [88], Jungck [38] defined the
concept of compatibility of two mappings, which
includes weakly commuting mappings as proper
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subclass. After this definition there is a multitude of
compatibility like conditions such as : compatibility
of type (A) (Jungck, Murthy & Cho [39],
Compatibility of type (B) (Pathak and Khan [65]),
compatibility of type (P) (Pathak et al. [66]), weak
compatibility of type (A) (Lal, Murthy & Cho [52]),
p-weak compatibility (Ume and Kim [110]) whose
details can be seen in their introducing papers. In
(1998), Jungck and Rhoades [40] termed a pair of
mappings to be weakly compatible (or coincidently
commuting) if they commute at their coincidence
point. In (2001), Ahmed and Rhoades [2] producer
some common fixed point theorems for compatible
mappings on complete metrically convex metric
spaces thereafter in (2002) Aamri and Moutawaki
[1] gave some new fixed point theorems under strict
contractive conditions.In (2003) Som [108] obtained
some common fixed point results for a weaker type
of mappings than commuting or weakly commuting,
called compatible mappings, satisfying a more
general inequality condition. In (2004) Phaneendra
[72] have obtained common fixed point theorems
for a pair of self maps which commute at their
concidence points, called weakly compatible maps
using the idea of an orbit relative to self maps.

It has been known since the paper of
Kannan [42] that there exists maps possessing
discontinuity in their domain but still admitting
fixed points. However, in every case the maps
involved were continuous at the fixed point.
Recently some authors attempted to relax continuity
requirement in such results and for the work of this
kind one May refer to Pant ([61], [62], [63]), Singh
and Mishra [103] and Pant, Lohari and Jha [64]. In
(2001) Beg [5] proved an iteration scheme for
asymptotically non expansive mappings on convex
metric spaces. In (2003) he [6] obtained an iteration
process for non process for non linear mappings in
uniformly convex linear metric spaces. He also
proved in [7] fixed point set function of non
expansive random mapping on metric spaces. In
(2003) Fisher & Duran [25] proved some fixed point
theorems for multivalued mappings or orbitally
complete uniform spaces.In (2004), Suzuki [109]
generalized the result of Kanan [43]. In (2005),
Popa [73] has improved the result of several author
by removing the assumption of continuity, relaxing
compatibility to the weak compatibility property and
replacing the completeness of the spaces with a set
of four alternative condition for four functions
satisfying and implicit relations. In (2006) Proinov
[75] established the Meir-Keeler type contractive
conditions and the contractive definitions involving
gauge functions.The concept of 2-metric spaces has
been investigated initially by Gahler [27]. This
concept was subsequently enhanced by Gahler ([28],
[29]), White [112] and several others. On the other
hand Iseki [33], Iseki-Sharma-Sharma [34], Khan-
Fisher [47], Khan [46], Singh-Tiwari-Gupta [98]
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and a number of other authors have studied the
aspects of fixed point theory in the setting of 2-
metric space.

In the last three decades, a number of
authors Cho-Khan-Singh [17], Iseki [33], Iseki-
Sharma-Sharma [34], Ram [77], Sharma ([91],
[92]), Singh [(96), (97)], Singh-Ram (99) and Singh
and Virendra (100) have studied the aspects of fixed
point theory in the settings of 2-metric spaces. They
have been motivated by various concepts already
known for metric spaces and have thus introduced
analogous of various concepts in the frame-work of
the 2-metric space. Khan [45], Murthy-Chang-Cho-
Sharma [56], Rhoades [83], Singh-Tiwari and Gupta
[98] and Naidu-Prasad [57] introduced the concepts
of weakly commuting pairs of self mappings,
compatible pairs of self mappings of type (A) ina 2-
metric spaces, and they have proved several fixed
point theorems by using the weakly commuting
pairs of self mappings, compatible pairs of self
mappings of type (A) in a 2-metric spaces. In
(2001), Naidu [58] has proved some fixed point
theorems for pairs as well as quadruples of self
maps on a 2-metric space satisfying certain
generalized contraction condition. In (2001) B.
Singh and R.K. Sharma [105] have proved some
common fixed point theorems using the concept of
compatible mappings in 2-metirc spaces.

Browder and Petrysyn [13] introduced the
concept of asymptotically regular maps at a point
in a metric space which is defined as:

“A mapping of a metric space (X,d) into

itself is said to be asymptotically regular at a point x
in X if ”.
Using this concept, many authors proved various
result on fixed point and common fixed points for
such mappings in complete metric spaces, for the
work of this kind one can be referred to Anderson et
al [4], Guay-Singh [31], Sharma-Yuel [93]. Rhoades
et. al. [84] introduced the concept of relative
asymptotic regularity for a pair of mapping on a
metric space and Jungck [38] proposed the concept
of compatible mappings and weakly commuting
mappings. Sessa [88] and others used both cited
concepts and gave many interesting results.

Singh-Virendra [101] have proved a
common fixed point theorem for three weakly
commuting mappings by using the concept of
relative asymptotic regularity of a sequence in 2-
metris spaces. Later on using the idea of compatible
mappings Singh and Sharma [105] generalized, the
result of Singh and Virendra [101]. B. Singh,
Chauhan and Sharma [104] extends the results of
Iseki and others [35] for four compatible maps and
proved a common fixed point theorem using the
concept of relative asymptotic regularity of
sequence. Nesic [60] give a general result about
fixed points for asymptotic regular mappings on a
complete metric spaces.

Dr. Sunil G. Purane

ISSN - 2347-7075

Asymptotic fixed point theory involves
assumptions about the iterates of the mapping in
question. It has a long history in non linear
functional analysis and in fact the concept of
‘asymptotic contractions’ is suggested by one of the
earliest version of Banach’s principle attributed to
Caccioppoli [15]. In (2003), Kirik [51] introduced
an asymptotic version of Boyd — Wong [10] result.
In the literature of fixed point theory many authors
have extensively studied. Common fixed point
theorems in Banach spaces. Bose [9] proved same
results by taking the domain a closed converse
subset of a uniformly convex Banach spaces. Prasad
[74], Sahani and Bose [85] extended the results of
Bose [9], by relaxing the condition of convexity
from the domain.Recently, Som [107] obtained
some fixed point theorems in uniformly convex
Banach spaces, which generalize some results of
Prasad [74] and Sahani — Bose [85] with respect to
their mappings and inequality conditions. In (1992)
Ahmad and Imdad [3] obtained some common
fixed point theorem for compatible asymptotic
regular mappings in Banach spaces and generalized
some known results with respect to their mappings
and inequality conditions. In (2003), Penot [71]
proves some non expansive mappings from a closed
convex subset of uniformly convex banach spaces
into itself under some asymptotic contraction
assumptions.

B. Gregus [30], proved a fixed point

theorem in Banach theorem in Banach space, which
is called Gregus fixed point theorem and then many
authors have obtained some fixed point theorems of
Gregus type. (Fisher and Sessa [24]), Jungck [41],
Mukherji and Verma [55] and many others. In
(2001) Sushil Sharma and Bhavna Deshpande [94]
have prove some fixed point theorem of Gregus type
for compatible mapping in Banach Spaces.
Khan and Imdad [49] obtained some results on fixed
point of certain involution in Banach spaces. In
(2003), he has introduced the concept of composite
involution in Banach spaces.Several interesting
results using fixed point theory are given in
approximation theory. During the last 130 years or
so this area has attracted the attention of several
mathematicians. An excellent reference is Cheney
[16]. For a survey paper one is referred to M.L.
Singh [102] afterwards the theorem of Brosowski
[12] has been a basic important results which was
the generlization of Meinardus [53].

In (1979) Singh [106] improved the results
of Brosowski [12], using a fixed point theorem of
Jungek [36], Sahab, Khan and Sessa [87]
generalized the results of Singh [106]. Pathak, Cho
and Kang (67) gave an application of Jungck’s (41)
fixed point theorem to best approximation theory.
They extended the results of Singh (106) and Sahab
et. al. (87). In (2001) Dhange [20] generalized the
result of Sahab et. al. (87) in best approximation
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theory under some weaker conditions. In (2004),
Nashne [59] proved some fixed point theorem
without star shaped ness condition of domain and
linearity condition of mappings in setup domain and
linearity condition of mapping in setup of normed
linear space. Recently Vijayraju and Marudai [111]
proved some results on common fixed compact
mappings are established in the setting of normed
linear space which is an extension of results of
Sahab, Khan [86] and Dotson [21] as a consequence
some applications of best approximations are
established.
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