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Abstract:

The theory of fixed point is one of the most important and powerful tools of the modern mathematics not
only it is used on a daily bases in pure and applied mathematics but it is also solves a bridge between analysis and
topology and provide a very fruitful are of interaction between the two.Fixed point theorems have numerous
applications in mathematics. Most of the theorems ensuring the existence of solutions for differential, integral,
operator or other equations can be reduced to fixed point theorems.

Introduction :

The fundamental result in the best
approximation theory was given by Meinaradus
[11], afterwards in (1969), Brosowski [1] theorem
has been a basic important result, many authors have
studied the applications of fixed point theorem to
best approximation theory. Subrahmanyan [21], S.P.
Singh [18], M.L.Singh [18], Carbone ([2] [3]),
Sahab, Khan and Sessa [14], Hicks and Humphries
[15], In (1988), Sahab, Khan and Sessa [14]
generalized the result of Singh [19], Recently
Pathak, Cho-kang [13] gave an applications of
Jungck’s [9], fixed point theorem to best
approximation theory they extended the result of
Singh [19] and Sahab et. al. [14]. In Section 1.2, we
have given necessary definitions and results which
will be useful in the sequel. In Section 1.3, we have
proved some common fixed point theorems of
Gregus type in Banach spaces and give application
of our fixed point theorem to best approximation
theory.

1.2 Preliminaries :

The following definitions will be used in
this chapter.

1.2.1 Definition :

Let C be a subset of normed linear space X.
Then

(i) Amapping T : X — X issaid to be
contractive on X. if HTX — TyH < HX — yH for all
X,y in X (resp. C)
(ii) The set D, of best (C, a)- approximants to X
consists of the point y in C such that
aHy — )_(H =inf ﬂ\z — )_(H 'Z€e C}, where X ina
point of X, then for 0 <a <1.

Let D denote the set of best C-
approximants to X. for a = 1, our definition

reduces to the Set D of best C-approximants to X .
(iii) A subset C of X is said to be starshaped with
respect to a point g C if, for all x in C and all
A€[01], X+ (1-4)qeC.

where the point q is called the star-centre of C.

(iv) Clearly convex set is starshaped [4] with respect

to each of its points, but not conversely.
for an example, the set

C ={0}>< [0,1] \ [1,0] X{O} is starshaped
with respect to (0,0) € C as the star-centre of C,

but it is not convex.
Throughout this chapter F (T) denotes the set of
fixed points of T on X.

By relaxing the linearity of the operator T
and conexity of Din the original statement of
Brosowski [1], Singh [19] proved the following
results.

1.2.2. Theorem:
Let C be a T-invariant subset of a normed

linear space X. Let T :C — C be a contractive
operator on C and let X € F(T).if D X is
non empty, compact and starshaped, then
DAE(T)#4.

In the subsequent paper Singh [19],
observed that only non expansiveness of T on
D’'=D U{X} is necessary. Further, Hicks and
Humphries [7] have shown the assumption
T :C — C can be weakened to the condition
T:0C—>C YeC,, ie, YeD is not

neceassarily in the interior of C, where OC denotes
the boundary of C.

Recently, Sahab, Khan and Sessa [14]
generalized Theorem 1.2.2 as in the following.
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1.2.3 Theorem:
Let X be a Banach space let T, | : X — X be operators and C be a subset of X such that

T:0C > Cand X€ F(T) N F(I). Further, suppose that T and I satisfy
[Tx=Ty| <[Ix—1y|
forall x,yin D’ s linear, continuous on D and ITx = TIx for x in D if D is non empty, compact and

starshaped with respect toa point 0 € F(1) and 1(D) =D, then DN F(T)NF(l)=¢.

Recall that in (1986), Jungck [8] defined the concept of compatibility of two mappings, which includes
weakly commuting mappings (Sessa [15]) as proper sub class.
1.2.4 Definition :

Let X be a normed linear space and let S, T : X — X be two mappings S and T are said to be
compatible if, whenever {x,} is a sequence in X such that SXn ,TXn —> X € X, then

|STx, =TSx,| >0asn— o0

In (1998), Jungck and Rhoades [10] introduced the notion of weakly compatible maps and showed that
compatible maps are weakly compatible but converse need not be true.
1.2.5 Definition :
A pair of Sand T is called weakly compatible pair if they commute at coincidence points.
1.2.6 Example :
Consider X = [0,2] with the usual metric d. Define mappings S,T : X — X by
Sx=0ifx=0,Sx= 0.15ifx>0
Tx=0ifx=0,Tx=03if0<x < 0.5 Tx=x-0.35if x> 0.5
Since S and T commute at coincidence point O € X, so S and T are weakly compatible maps to see that

n

Then SX, — 0.15,Tx, — 0.15 but STx, — 0.15,TSx, — 0.3 as N —> 0. Thus weakly

compatible compatible maps need not be compatible.
1.3 Some Results On Common Fixed Points And Best Approximation :
First of all, we prove a common fixed point theorem of Gregus type for compatible mappings in Banach
space. Our Theorem is improvement of results of Gregus [6], Jungck [9], Sharma and Deshpande [16].
Throughout this section, we assume that X is Banach space and C is non empty closed convex subset of

1
Sand T are not compatible, let us consider a decreasing sequence {x,} where X = 0.5+ (— ,n=12,...

X.
Now, we prove our main theorem.
1.3.1 Theorem :
Let S and T be compatible mappings of C into itself satisfying the following condition:

Tx—Ty| <a|Sx—Sy|+b maxﬂ\Tx —SX|,[Ty - SyH}
+C maxﬂ\Sx — Sy, [Tx—Sx|,|[Ty - SyH}

1
+d max{[Sx— Sy, [Tx— S} [Ty — Sy, 2 (Ty — ¥+ [Tx—Sy])}
..(1.2)
for all x, y in C where a,b,c,d>0, a+b+c+d=1 and a+c+d< \/5 if S is linear and continuous in C and

T (C) S (C) Then T and S have a unique common fixed point z in C and T is continuous at z.

Proof :
Consider x = Xq be an arbitarary point in C and choose points x;, X, and xz in C such that
SX1=TX, SXo=TXy, SXa=T Xo

This can be done since T(C) C S(C). forr=1,2,3,... leads to (1.1)

Dr. Sunil G. Purane
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HTXr N SXrH - ”TXr _TXr—1H
< alSx, —Sx, ||+ bmax{[Tx, — Sx,||[Tx,_, — Sx.[}

+C maxﬂ\er — SX_yl [T, = Sx, [, [Tx,; — er_lu}

1
+d mamexr = SX [l Tx, = S%, [T, — S|, 5 (”Txr_1 — S ||+ [T, — er_lu)}

which shows that,
since [[Sx, —SX,_y[ =[Tx_, —Sx._,|, we have, forr=1,23,.

HTXr - er H < HTXr—l - SXr—lH : ...(L.2)
From (1.1) and (1.2) we have
[T, = Sx| =[x, ~T|

< a[Sx, — SX| + bmax{[Tx, — Sx, |,[Tx — Sx|}

+C max{”sz — SX|,|[Tx, — Sx, [, [Tx - SXH}

1
+d max{”Sx2 — SX|||[Tx, — Sx,[,[Tx — Sx], E(HTX — S, | +|Tx, — SXH)}
<a|Tx, —Sx|+b maxﬂ\Tx — x|, [Tx— SXH}
+C maxﬂ\Tx1 — X, [Tx — Sx||, [Tx - SXH}
1

+d max{[Tx, —Sx|, [Tx— x|, [Tx— X QQFX ~Tx |+ [T, —SX)}
< 2a|Tx— Sx| + b|[Tx — SX|+ 2¢[Tx — S|+ d max{”'l'x1 — SX|,[Tx— Sx|,[Tx — Sx|,

1

EQ\TX = S +[[Tx =S¥+ [T, — x| +[|Sx, - SX|)}
< 2a|Tx — Sx| + b|Tx — Sx|+ 2¢|[Tx — SX|+ d maxﬂ\Tx1 — SX,[Tx— Sx|,[Tx - S|,

1
(X = x|+ [T = ¥ + [T, — 5]}

< 2a|Tx — SX| + b[Tx — SX|+ 2¢|[Tx — S|+ 2d|Tx — SX|
<{(2a+2c+2d) +bjTx—SX| - (13)

we shall now define a point

1 1
= E X2+ E X3.
Since C is convex, Z € C and S being linear
1 1
Sz=|=|Sx,+| = |S
@ : [zj &
1 1
== [Tx +| = [TX (L4
(zj % @T -

It follows from (1.2), (1.3) and (1.4) that

Dr. Sunil G. Purane
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1 1
ISz - Sx|| = H(Eiji + (EJTXZ -~ SX1H
<1
)
1
<=
)
< [%) {L+(2a+2c+2d) +b}fTx— SX| ..(L5)

by (1.2) and (1.4), we have

ISz —Sx,| = [%)Txl + (%ijz — SX,

1
< (Ej T, — Sx,|

< (%) Tx—Sx|. ..(16)

By (1.1) and (1.6) we have
1 1
Tz - (ZJTX1 - (ZJTX2

1 1
< (2) T2 T + (Zjn x|

1
a2 x|+ 5 Jomc{z - e} 7 - s

1
- su+ 2 - sx|

T Sx+ @ {(2a.+2c + 2d) + bYTx— S

[Tz—Sz7|=

N~

IN
TN

omax Sz - Sx [Tz - S2], [T, - Sx,}

+
7/ N\
N

d max {[Sz - S} [Tz - 52| [Tx, - x|

+
7/ N\

NI, NI NP N N

N—

1 1
(T — 2] + [Tz - le)}+(2ja82— 3x2+(2)bmaxﬂn_ 2] [T, — Sx}

cmax ﬂ\Sz = S%,,[Tz—Sz|,[Tx, - SXZH}

+

N—

d max ﬂ\Sz — S, ||z = Sz|,[Tx, — Sx,,

+

7/ N /N

T, —Sz|+|Tz - SXZH)}

A NI
P

< (i] a[l+2a+2c+2d +b][Tx—Sx|+ (;)b max {[Tz - Sz|,[Tx - X}
+ jS max {; (1+2a+2c+b+2d)[Tx—Sx|,[Tz - Sz|,[Tx— Sx}

Dr. Sunil G. Purane
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+@d max E (L+ 28+ 2+ b+ 2)[TX =S¥ [Tz — 2] [Tx — x|,

{22+ 2020 D)X 4Tz - Sz}}+(£ﬂaTx— x|

< AY[TX — SX
+@)b max ﬂ\Tz—SzH,HTx—SxH}+ (;Jcmax {; Tx—Sx,Tz—sZ,TX_SX} ”T H

+@d max {; x5 T2 2 x5, S (2J7x -1+ T2 52])

L (17)

where

A:(ija[2+2a+20+2d +b]+b+%c[1+2a+20+b+2d]

+%c+%d[2+2a+20+b+2d]+d

<ia(3+\@)+‘11c(2+\/5)+b+;c+j(3+\/5)+d

<§+§+b+c+d
4 4

=a+b+c+d=1

so we have 0< A <1.
Since x is an arbitary point in C, from (1.7), it follows that there exists a sequence {z,} in C such that

[Tz = Szo|| < 2[T%, = x|,
Tz, — Sz, < A[Tz, — Sz,

Tz, —Sz,|< A[Tz,_, — Sz, |
which yield that

[Tz, — Sz, < A™[Tx, — Sx,|,
and so we have
lim [Tz, —Sz,[=0 (1.8)

Setting K = {x e C:|Tx—Sx|< %}

forn=1,2, ... then (1.8) shows that
K,#¢ forn=12,...

and K, D K, o K;>o...

obviously, we have TK . # ¢ and

TKn ) TKnJr1 forn=1,2,...
for any x, y in K, by (1.1), we have

Dr. Sunil G. Purane
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[Tx =Ty < a|Sx— Sy| + n b+ cmax{|Sx — Sy|,n*}

rdmax {Sx—Syl,n %, (0t +[Sx— Sy + ™ + x-Sy}
< a|Sx— Sy + b + cmax {|Sx — Syj,n"*
+d max{|sx—Sy|,n, (n* + |Sx— Sy|)}

<a@n™ +|Tx=Ty[)+n"b+c(2n™ +|Tx=Ty|) + d(Bn~" + [Tx - Ty|)

=[a+c]2n™ +[a+c+d][Tx—Ty[+n""b+3n"d
Therefore
[Tx=Ty|<n™{2[a+c]+b+3d}j(1-a-c—d)*
Thus we have
lim,_,, diam(TK_ )=lim_,_ diam(TK,)=0

by cantor's theorem, there exists a point u in C such that

N(TK,)=fur
n=1
Since U € C for each n = 1,2,... there exists a point Y, in TK, such that
-1
[y, —uf<n
Then there exists a point x, is kK, such that
lu-=Tx [<n™

andso TX, = U as nN—oo.

Since X, € kn, we have also

Tx, —Sx [ <n™

andso SX, > U as N — o,

Since S is continuous STX, — Su and SSx, — Su as n— oo,
Moreover [TSX, —STx | >0 asn—oo.

Since Sand T are compatibleand TX, —> SX. —U aS N — oo thus we have TSX, — SU.

By (1.1) we have
[Tu - Sul < [Tu-TSx[+[TSx, - Su

< a|Su — SSx,|| + bmax{|Tu — Sul,[TSx, — SSx[}
+ cmax{|Su — SSx, |, [Tu — Sul,[TSx, — SSx,}
+ d maxcfsu - 55 [Tu— Sul, [TSx, - S5x |

1
s, —sul + ru— s+ [rsx, ~sul

Letting N —> 00, we obtain

Dr. Sunil G. Purane

1528



IJAAR Vol.11 No.4 ISSN -2347-7075
Tu - Suf < a|Su—Su|+b max{”Tu — Sul,[|Su - SuH}

+ cmax{|Su — Sul,[Tu - Sul, |Su — Sul}
+d max{|Su — Sul[Tu - Sul,|Su - Sul,

1
E(HSU —Su|+|Tu- SuH)}+ |Su—Su|

=(b+c+d)[Tu—Su|
=(1-a) [Tu—Sul

So we have Tu = Su.
Thus TSU=STU and TTu=TSu = STu since S and T are compatible. Furthermore, we have

[TTu—Tu| < aSTu - Su||+ bmax{[TTu— STul|,[Tu - Sul}
+cmax{|STu— Sul,[TTu— STul,[Tu - Sul}
+d max{|STu— Sul,[TTu—STul[Tu - Sy

~(Tu- ST+ [rTu - sul)

=(@+c+d)[TTu—Tu

This leads to HTTU —TUH =0since (a+C+d) < Ja.

Let Zz=Tu=Su.
ThenTz=zand Sz =STz =TSz =Tz =z.
Thus z is a uniqgue common fixed point of T and S. The uniqueness of z is a consequence of inequality

(1.1). Now, we show that T is continuous at z. Let {y,}be a sequence in C such that Y, — Z.
Since S is continuous, Syn — Sz, By (1.1), we have
Ty, —TZ| <a|Sy, —Sz| +b maxﬂ\Tyn =Sy, |.[Tz - SZH}

+cmax{Sy, - z|.[Ty, - Sy, ||[Tz - 52}
+d max{|Sy, — Sz|,[Ty, - Sy,|[Tz - Sz,

2=y +[ry, ~s2])
<a|Sy, - Sz + bmax{[Ty, —Tz| +|Tz - Sy, }
+cmax{|Sy, — Sz|/[Ty, — Tz + [Tz - Sy, |}
+ d max{|Sy, — Sz|,|[Ty, - Tz| + [Tz - Sy, |.[Tz - 57,

1
22— sy + 1y, - s2)}

Dr. Sunil G. Purane
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<a|Sy, — Sz + bﬂ\Tyn ~Tz|+|Sz - SynH}

+ cﬂ\Tyn —Tz|+|Sz- Sy, H}

+d ﬂ]Tyn —Tz|+[Sz - Sy,|,
Ty, —Tz|<(a+b+c+d)|Sy, —Sz|+ (b +c+d)[Ty, —T¢]
<(a+b+c+d)@d-b-c—d)7Sy, -5

Therefore, we have TY, — TZ and so T is continuous at z.

This completes the proof.

As a consequences of our Theorem 1.3.1, we have the following results.
1.3.1.1Corollary:

Let S and T be compatible mappings of C into itself satisfying the following condition:

[Tx—Ty| < a]Sx— Sy| + b max{[Tx— $x], [Ty — Sy
+C maxﬂ\Sx — Sy, [Tx—Sx], [Ty - SyH}

for all x, y in C where a,b,c>0, a+b+c=1 and a+c< \/5 if S is linear and continuous in C and T (C) - S(C).

Then T and S have a unique common fixed point z in C and T is continuous at z.
Corallary 1.3.1.1 shows the result of Sushil Sharma and Bhawna Deshpande [16], which obtain by
puttingd=0.
Now if b=0, ¢=0 then we get the following corallary
1.3.1.2 Corollary:
Let S and T be compatible mappings of C into itself satisfying the following condition:

Tx—Ty| < a|Sx—Sy|+ (1—a) maxﬂ\Tx —Sx|, [Ty - SyH}

forall x,yinC, 0 <a<1,if Sis linear and continuous in C and T (C) c S(C), Then T and S have a unique

common fixed point z in C and T is continuous at z.
1.3.1.3 Remark :
Corallary (1.3.1.2) also proves continuity of T, so it improves the result of Jungck [9].
if we put a = b = ¢ = 0 then we get the following result
1.3.1.4 Corollary:
Let S and T be compatible mappings of C into itself satisfying the following condition:

1
rxTy] < d max x-Syl x4, Ty Syl  (Ty- 5+ Tx )}

for all x, y in C where 0< d <1, if S s linear and continuous in C and T(C) C S(C). Then T and S have a

unigue common fixed point zin C and T is continuous at z.
To demonstrate the validity of our Theorem 1.3.1, we have the following example
Example :

Let X =R and C= [0,1] with the usual norm. Consider the mappings T and S on C defined as

Tx:%x and Sx=%x for all xeC

Then T (C) = {o, 1} =S(C)= {o, 1} |
4 2
It is easy to see that S is linear and continuous.

Further, T and S are compatible if lim o X =0, where {Xn} is a sequence in C such that
lim,_ Tx,=lm___Sx, =0 forsome 0cC.

If we take @ =1/9,b =13/18,¢c =3/18,d = 0 we see that the condition (1.1) of our Theorem

Dr. Sunil G. Purane
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1.3.1, is satisfied also we have

a+b+c=1and a+c<\/5.
Thus all the conditions of Theorem 1.3.1 are satisfied and 0 is the unique common fixed point of Sand T.
Now, in our next theorem, we give an application of our fixed point theorem to best approximation
theory. We improve the results of Pathak, Cho-Kang [13] and Sharma-Deshpande [16].
1.3.2 Theorem :

Let T and S be mapping of X into itself. Let T :0C —C and X € F(T) N F(S). Further,
suppose that T and S satisfy the condition (1.1), for all x, y in D} =D, U {X}U E , where

E = {q e X :TX,,5%, > q,{x,} < Da}, a,b,c,d>0, a+b+c+d=1, a+c+d <~/a , S is linear, continuous
on D, and T,S are compatible in D, if D, is nonempty, compact, convex and S(D,)=D, then

D,"F(M)NF(S)=¢.

Proof :
Let Y € D, and hence Sy is in D, since S(D,) =D, .

Further, if Y € 8C, then Ty is in C, since T(@C) - C. from (1.2), it follows that
[Ty —X|=[Ty-Tx|

<a|Sy - x| + bmax{Ty — Sy|, [T - Sx]
+cmax Sy - S|, [Ty — S|, Tx - %]
+d max{|Sy— S|, [Ty - Syl [Tx - 5%,
1 _
(% =Sy +[Ty-Sx])}
[Ty - x| < asy - x|+ bmax [Ty - Sy}, | - x]
+cmax{|Sy - x|, [Ty - Syj[x - X[}
— v _ v 1 Y X
+d max{|Sy — x|, [Ty — Sy|.|% - ], E(”X — Syl + [Ty —x|)}
[Ty - x| < alSy - x|+ b{fTy - x| + [ - sy}

+cmax{|Sy — %], [Ty — %] +[% — Sy|}

o 1. o
+d max{[Sy - x|, [Ty - Sy}, - (- syl +[Ty -]}
[Ty - x| < al)sy - x| +bi{Ty - x| + % - Syl}+ c{Ty — x| + [x - s

o e 1 i}
+d max{[Sy — x|, [Ty = x| + [x = Sy, —(|x = Sy|+[[Ty - x|}

Dr. Sunil G. Purane
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[Ty = %| < &}y = x|+ b[Ty — X] + blx - Sy|+ c|Ty - X] + cx - Sy]

+d{Ty - x| +[x - sy}
Ty—X|<(@+b+c+d)|Sy—x|+(b+c+d)|Ty—X|
L-b—c—d)[Ty—x|<|Sy—X|

a[Ty - x| <[Sy -],
which implies &|[Ty — X|| <||Sy — X|| and so Ty is in D,. Thus T maps D, into itself.
Proceeding as in theorem (1.3.1), we can show that

lim, ., Sx,=lim_, Tx, =u -..(1.9)

Therefore, for a sequence {X,} in D, the existence of (1.9) is guaranteed whenever D, C K. Moreover
U € E . Since S and T are compatible and S is continuous, we have

lim__ TSx, =Su
and lim __S*x, =Su
By (1.1), we have

[TSx, = x| =[Tsx, -TX]|
< as?x, - x|+ bmax{Tsx, - S,

%~ sx]}

[Tx - sx(

+cmax mszxn — SX|,[TSx, - $°x,

+d maxmszxn - Sx]|[Tsx, —$%x,

%(”‘I’)‘(—Szxn

which implies, as N — 00
ISu-x| <a|Su-x|+b max{HSu - Sul,[x - >‘<H}

T — SX|

+[Tsx, - x|}

+ cmax{su - x) Jsu - Sul |x - x|
o T o
+ dmaxfsu x| su Sul x|, (5] [su )}

< alSu—x|+c|Su—x| +d|Su—x|

|Su-x|<+a [su-¥]|.
Hence SU = X, By (1.1) again, we have

Dr. Sunil G. Purane
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[Tu = x| =[Tu-Tx|

< a||Su — Sx|| + bmax{[Tu — Sul|, [Tx — Sx]}
+C max{HSu — SX||,[Tu = Sul,[Tx - S)‘(H}

+d max{HSu — SX|,[Tu — Sul,[Tx — Sx|, %(”TT( —Su|+|Tu- S)‘(H)}
which gives, by taking SU = X
ITu - x|< ax - x|+ bmax{fTu - x|, |x - x]}

+omax {x - x|, [Tu - x|, Jx - |}
o o e of Lo o o
+d max{[x — x|} [Tu = x|, [ = x], > (% = %]+ [Tu - x])}

<b|[Tu - x| + ¢[Tu = x|+ d[[Tu - x|
Mu—x| <@-a)Tu—x|

So Tu=X.
Next, we consider

[Tu—Tx, | < a|Su - Sx, ||+ bmax{[Tu — Su,[Tx, - Sx,}

+ cmax{|Su — Sx, [, [Tu = Sul,[Tx, — Sx,}

1
+d max{[Su— x| [Tu - Sul, [Tx, - $x,[, > (Tx, —Su] +[Tu—sx,)
Letting N —> 00, we get
i —ul < alx o+ bt~} Ju —ul -+ max i —ul ) ju -

o v o 1 o s llo
+d mac R —ul, [% = x|, Ju —u], > (u = x| + [x — ul}}

IX—u|<(a+c+d) |[x—ul

<vJa |x-ul,since a+c+d <+/a
andso X =U, i.e., u=Su=Tu. By theorem (1.3.1), u must be unique. Hence E = {u}. Then

D; =D, u{u}

Let {ko.} be a monotonically non-decreasing sequence of real numbers such that 0< kn <1 and
lim oo K, =1. Let {x}be a sequence in D;
T, : D; — D; by

T.X; = knij +@Q-k,)p
for each Nne N, it is possible to define such a mapping T,. Since D; is starshaped with respect to
peF(S).

Since S is linear, we have

satisfying (1.2), for each N e N, define a mapping

Dr. Sunil G. Purane
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T,Sx; = knTij +@A-k,)p,

ST, Sx; =k, STx; + (1-K,)p.
By compatibility of S and T, we have for each N € N

o<lim,_,[T,Sx; —ST,x|
<k, lim_[TSx; —STx;|+lim_ (1—k,)|p— p|
and so
lim ... [T, Sx; = ST,x;[ =0
whenever lim josoo SXj =lim j%anXj = U since we have
lim T x; =k lim,_ Tx, +(1-k )u

=k .u+@—k,)u

=Uu.
Thus S and T, are compatible on D foreachnand T,(D.) < D, =S(Dy).
On the other hand by (1.1), forall X,Y € D; we have, for all j 2N and n fixed

[Tox =T,y =k, [Tx-Ty]
<k [Tx-Ty|

<[Tx-Ty|
< al[Sx— Sy| + bmax {Tx — Sx|,[Ty - Sy

+emax{[sx— Sy [Tx - Sx|. [Ty - sy
+d max{|sx— Sy, [Tx— Sx|,[Ty - sy %Q\Ty =5 +[Tx - Sy|)}
<a|Sx—Sy|+b maxﬂ|Tx =T X+ [T, x = SX|,[Ty =T, y| +|T,y - Sy||}
- cmascSx = Syl Tx =T, |+ [T, x— SHl Ty ~T,y1 +[T,y - Sy}
- dmax S — Syl TX =T, T, x = SHJ Ty ~T,y] + T,y - Sy,
%Q\Ty =Ty [Ty = K+ [Tx =T, + [T, x - Sy}
< S-Sy -+ bmax{(L—k, )X~ pl-+ T,x~ 564 @k, Ty pl+[T,y Sy}
- omax x-Syl I, T pl+ T, x— SK, -k, )Ty — pl [T,y - Syl
- dmax{Sx— Syl (L k )Tx = pl-+T,x = S, @k )Ty = pl-+ Ty~ 4]

1
5((1— k) ITy = B+ [T,y = S+ @k, )Tx— p] + [T, x - Sy])}
Hence for all j >N, we have

Dr. Sunil G. Purane
1534



IJAAR Vol.11 No.4 ISSN - 2347-7075
[T x =T, y| < a||Sx— Sy|+bmax{@ -k, )[Tx— p|+|T,x—Sx], @~k )Ty - p| +|T,y - Sy}

- emasx - Syl(L—k,JTx— pl + [T,x -5, @k, Ty — pl [T,y - Syl

..(1.10)
+dmaxx- Syl -kl + x-S, @k, Ty - pl+[T,y - Sy

;((1—'<,-)Ty = Pl Ty = x|+ @k ITx—pl +[T,x sy}
Thus, since lim jo»€; =1, from (1.10), for every n € N , we have
[T, x =T,y < lim jo | T,x=T,y|
<lim - [afs -y + bmax -k JTx— pl + [T, -S4k YTy - pl+ T,y - Syl
+omax ¢ Syl(1k,JTx— pl[+ T, x() - Sxh @~k [Ty pl + [T,y ~ ]}
+d maxfsx - Syl -k [T pl [T, x - 56,0k )Ty~ pl+[T,y - Sy}

1
(A=K )Ty = p| [T,y =¥ + A=k, JTx— pl-+ [T, x -y

which implies
IT.x=T,y|=a|Sx—Sy|+b max{ﬂTnx —SX|,[T,y - SyH}

Tn y— SyH}

+C maxﬂ\Sx— Sy

T,X—SX

1
+d max{[Sx— Syl [T, x = S| [T,y — Syl = (IT,y — ¥+ T, xSyl

forall X.y € D;, therefore by theorem (1.3.1) for every N € N, T, and S have a unique common fixed point
Xn N D;, i.e.,every N € N, we have

F(T,)NF(S)={x.}.

Now, the compactness of D, ensures that {x,} has a convergent subsequence {Xni } which converges to
a point in D, since

Xo = Tn Xy = kniTxni +(1- kni )p ..(112)
and T is continuous, we have as | —> 00 in (1.3.23) Z=TZie, Ze D, NF(T).

Further, the continuity of S implies that
Sz=S(lim_ x,)=Ilim__ Sx =lim, x =z

1—00 “'Nj |—00 1—00 “'nj

i, Z€ F(S), therefore, we have Z € D, " F(T) N F(S) and so.
D,NF(M)NF(S)=¢

This completes the proof.
As a consequence of our Theorem 1.3.2, we have the following result.
1.3.2.1 Corollary:

Let T and S be mapping of X into itself. Let T :0C — C and X € F(T) N F(S). Further,
suppose that T and S satisfy.

Tx—Ty| < a|Sx — Sy| + bmax {”Tx — X, [Ty - SyH}

1
+omax{[Sx— Syl [Tx— S| [Ty — Syl (Ty — x|+ [Tx— Sy}

forallx,yin D, =D, U {X}U E  where
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E = {q e X :Tx,,5%, = q,{x,.}c D}, ab,c>0, a+b+c=1, a+c <~/a, S is linear, continuous on D,
and T,S are compatible in D, if D, is nonempty, compact, convex and S(D,)=D, then
D,"F(M)NF(S)=¢.

This corollary is obtained by putting d = 0 in Theorem 1.3.2 and is the result of Sushil Sharma and
Bhavana Deshpande [16] d = 0.

Now, we obtain the following result due to Pathak, Cho and Kang [13] by putting ¢ = d= 0 in Theorem

1.3.2.
1.3.2.2 Corollary:

Let T and S be mappings of X into itself. Let T :0C — C and X € F(T) N F(S). Further,
suppose that T and S satisfy.
[Tx—Ty]| < a||Sx— Sy]| + (1—a) max {[Tx— x|, [Ty — Sy|}
forallx,yin D, =D, U {X}U E , where
E= {q e X :Tx,,5%, = q,{x,.}c D}, 0 <a <1, if S is linear, continuous on D, and T,S are compatible

in D, if D, is nonempty, compact, convex and S(D)=D,, then D, N F(T) N F(S) # ¢.

Now, by puttinga =b =c =0 in Theorem 1.3.2 we get the following result.
1.3.2.3 Corollary:

Let T and S be mapping of X into itself. Let T:0C —C and X € F(T) N F(S). Further,
suppose that T and S satisfy

1
Ty < d maxcsx— Syl x-S Ty Syl 2y 5 + T sy)

forallx,yin D, =D, U {X}U E . where
E-= {q e X :Tx,,5%x, > q,{x,} < D, } 0<d <1, if S is linear, continuous on D, and T,S are compatible
in D, if D, is nonempty, compact, convex and S(D)=D,, then D, N F(T) N F(S) # ¢.

Now by weakening the compatibility condition in our Theorem 1.3.1 we prove the following result.

1.3.3 Theorem :
Let S and T be weakly compatible mappings of C into itself satisfying the following condition:

Tx—Ty| < a||Sx— Sy|+b maxﬂ\Tx — x|, [Ty - SyH}
+ cmax {|Sx — Sy], [Tx — Sx|. [Ty - S|}

1
+d max {[Sx - Sy, [Tx— Sx} [Ty — Syl —(ITy - x| +[[Tx— Sy}

...(1.12)
for all x, y in C where a,b,c,d>0, a+b+c+d=1 and a+c+d< JE if S'is linear and continuous in C and
T (C) C S(C). Then T and S have a unique common fixed point z* in C .

Proof :
Proceeding as in Theorem 1.3.1, we can show that TX, — U and SX, > U as N —>00.

Since T (C) - S(C) , there exists a point © € C such that U = SV, then using the condition (1.12),
we have
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[Tv=ul< [TV =T, | + [T, -l

< a[Sv— Sx,, | + bmax{[Tv — Svi, [T, — Sy}
+c maxﬂ\Sv — SXou [TV = SV, [T, — SXZHH}

+d max{|Sv — S, [TV = SV, [TX,, — S%, |

1
A 2n + — 9K )i T 2n
S (T, = Sv|+[[Tv =S, )+ [T, -]
Taking the limitas N —> o yields
Tv—u|=(+c+d)[Tv—u|
=(1—-a)[Tv—ul.

So we have Tv = u. Therefore Tv = Sv = u. Since T and S are weakly compatible, TSv = STv, i.e.,, Tu =
Su.

Let z*=Tu = Su. Again the weak compatibility of T and S implies. TSU= STU, 1.e., Tz*=Sz*.
Now we show that z* is a fixed point of T.

[Tz*~z]=[Tz*-Ty|
< a|Sz*—Sul|+ bmax {[Tz*—Sz*,[Tu - Sul}

+omax{|Sz*—Sul [Tz * -5z} [Tu - Su}

+d mamez *—Sul,[Tz*—Sz*|,[Tu - Sul| %(H'I’u — Sz +|Tz *—SuH)}

=(@a+c+d)[Tz*-z%
Thus TZ* = Z*, since (a+C+d) < aY? Hence Tz*=z*=Sz*

Finally, in order to prove the uniqueness of z* suppose that z* and Z; * are two common fixed points of
Tand S, where z* is not equal to Z; * then by (1.12), we obtain

2=z, =[Tz*-Tz*
<5252, |-+ bmaxc{Tz* -5z T2, *52, 4]
- omax 252, 4 T2* 52 T2, *-52,%)
+d max{[Sz*—Sz, ¥, [Tz*~Sz [Tz, *~Sz, ¥,

(2 >-s24+ T2 -2, %))

=(@+c+d)z*-z*

Thus z*= 2, * since a+c+d<~/a .
This complete the proof.

As a consequence of a Theorem 1.3.3, we get the following result after putting d = 0
1.3.3.1Corollary:
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Let S and T be weakly compatible mappings of C into itself satisfying the following condition.

\Hx—Tngﬂﬁx—SWh&nnwﬁﬂx—SAHﬁy—Sﬂﬁ

+omax [sx— Syl [Tx—Sx| [Ty - Sy

for all x, y in C where a+b+c=1, a+C< \/5 if S is linear in C and T(C) C S(C), then T and S have a

unique common fixed point z* in C.

Corollary (1.3.3.1) proves the result of Sushil Sharma and Bhavna Deshpande [17] for weaker condition.
1.3.3.2 Corollary:

Let S and T be weakly compatible mappings of C into itself satisfying the following conditions:

\Hx—TWksﬂ&x—SWH{l—aanﬂﬂX—SAHHy—SW&

for all x,y in C,0<a<l

if Sis linear in Cand T (C) - S(C) , then T and S have a unique common fixed point z* in C.

As a consequence of a Theorem 1.3.3, we get theCorollary(1.3.3.2) by puttingc =d = 0.

Now by takinga = b = ¢ =0 in Theorem 5.3.3 we get the following result for weaker condition.
1.3.3.3 Corollary:

Let S and T be weakly compatible mappings of C into itself satisfying the following conditions:

1
=Ty < d max s Syl x-S [Ty~ Syl - (y - x+[7x- Sy))}
Forall X,y in C,0<d <1

if Sis linear in Cand T (C) - S(C) , then T and S have a unique common fixed point z* in C.

Now we give an application of our fixed point Theorem 1.3.3 to best approximation theory. We improve
the result of Pathak, Cho-Kang [13] and Sharma-Deshpande [17] for weaker condition.
1.3.4 Theorem :

Let T and S be mapping of X into itself. Let T :0C — C and X € F(T) N F(S). Further,
suppose that T and S satisfy the condition (5.12), for all x, y in D; = Da ) {X}U E , where

E= {q e X :Tx,,5%, > q,{x,} < Da}, ab,c,d>0, a+b+c+d=1, a+c+d <~/a , S is linear, continuous
on D, and T,S are compatible in D, if D, is nonempty, compact, convex and S(D,)=D, then
D, "F(T)NF(S)#g.
Proof :

Let Y € D, and hence Sy is in D, since S(D,) =D,.

Further, if Y € 0C, then Ty isin C, since T (5C) - C. from (5.12), it follows that

[Ty =x|=[Ty-Tx|
< sy - ¥+ bmax Ty — Sy}, [Tx - [}
- cmax{Sy ~ 5% Ty Syl ITx - ¢}

) ool Lo o
+d max{[Sy - x| [Ty - Sy} [Tx - ¥}, - (% — | + [Ty - Sx])
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[Ty - x| < al}sy %]+ bmax{[Ty - Sy|, | - ]}

+cmax{|Sy - x|, [Ty - Syl,|x - |}

i} oL i
+d max{[Sy — x|, [Ty - Sy} x — %], - (1% - Sy|+ [Ty - x])}
[Ty - x| <aSy - x| +bi{Ty - x|+ |x - Sy}

+cmax{|Sy — %], [Ty — %] +[% — Sy|

o 1. o
+d max{[Sy - x|, [Ty - Sy}, - (- syl+[Ty -]}
[Ty~ x| < alsy — x|+ bifTy - %] + % — Sy} + c{[Ty - %] + % — Sy

- ol e 1o -
+d max{[Sy — x|, [Ty = x|+ [x - Sy, Z (X — Sy +[Ty - x])}
[Ty — x| < &[Sy — x| + blTy — x| + blx — Sy|+ [Ty — x|+ cx - Sy]|
+d{Ty - x| +[x - sy
Ty—X|<(@+b+c+d)|Sy—x|+(b+c+d)|Ty—X|
@L-b—c—d)[Ty—x| <|Sy—x],

aTy - x| <[Sy—x]
which implies aHTy— )_(H < HSy— )_(H and so Ty is in D,. Thus T maps D, into itself.

Proceeding as in Theorem 1.3.3, we can show that
lim Sx, =lim__ Tx =u .(1.13)

n—o N—o0
Therefore, for a sequence {x,} in D, the existence of (1.13) is guaranteed whenever D, C Kkp.

since T(D,) = S(D,) there exists a point V € D, such that u = Sv. Then using (1.12).
TV = U < [TV =Ty [ +]TXp0 — U

< 8|SV —Sx,, ||+ b max{”Tv = SV|, [TXy s — Sx2n_1H}

+C maxﬂ\Sv — X[ [TV = S|, [TXps — SXZMH}
+d maxﬂ\Sv = %o g | [TV = SV|, [TXo0 4 = ¥4

1

> (”TX2H = Sv|[+[Tv— SszH)}“L [TXen1 =]
Taking the limit as N —> o0 vyields
[Tv—u|<(b+c+d)[Tv—ul

=(1-a)[Tv—ul

So we have Tv = u. Therefore Tv = Sv = u. Since T and S are weakly compatible, then TSv = STv, i.e., Tu
=Su, by (1.13) we have
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[Tu=x|=[Tu-Tx|

< a||Su — SX| + b max{|Tu — Sul| [Tx — Sx|}
+ ¢ max{|Su — SX|,[Tu — Sul, [Tx — S|}

+d maxﬂ\Su — SX||, [Tu — Sul, [Tx — Sx|, %(ﬂT)‘( — Su|[+|Tu- S)‘(H)}

<a|Tu—x|+b maxﬂ\Tu —Tul,[x - >‘<H}+ c maxﬂ\Tu —X|,[Tu—Tul,|x - >‘<H}
- 14 ~
+d max{[Tu = x|, [Tu=Tul, [ = x|, > % - Tul+[Tu - x])

<a|Tu—X|+¢c[Tu— x| +d|Tu-x|

Tu-x| <(a+c+d)[Tu—x|

So Tu =X since (a+c+d) <\/5 ,hence Tu=Su= X
Next, we consider

[Tu=Tx,[ =[x —u]
Tu—Tx, [ <a||Su—Sx,|+b max{HTu — Sul,[Tx, — Sx, H}

+cmax{|Su — Sx, |, [Tu— Sul, [Tx, — Sx, [}

- max {Su— S, [Tu— Sl T, = $x, (T, = Suj + [Tu - )

Letting N —> 00, we get
[ —ul < af —uf+ b max{]x — x],Ju ~uf}+c max{|x —ul, [x ~ ], Ju - u[j

o o o 1 o il
+d max{[x —ul, [x = x|, ju —ul, Z (Ju - x|+ [x -

IXx—u[<(a+c+d) [x—ulf
S\/a H)_(—UH. since (a+c+d)<\/5

X=u, ie., u=Su=Tu. By Theorem (1.3.3), u must be unique. Hence
E={u}. Then D, = D, u{u}

Let {ko.} be a monotonically non-decreasing sequence of real numbers such that 0< |(n <1 and
lim e kn =1 Let {xj}be a sequence in D; satisfying (1.13), for each N € N, define a mapping
T.:D, —> D, by

T.X; = knij +@Q-k,)p.

For each N € N it is possible to define such a mapping T,. Since D; is starshaped with respect to
peF(S).

we have,
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T.x; =k, lim,__ Tx; +(1-k,)u

lim ., TX
=k, u+(1-k, )u

=Uu.
Now, T,u=Su=u and T, Su = u =ST, u. Therefore S and T, commute at their coincidence point
Thus S and T, are weakly compatible on D foreachnand T,(D,) < D, =S(D,).

On the other hand by (5.12), for all X,VY € Dé we have, for all j 2N and n fixed
[Tax =Toy| = ki [Tx=Ty]

<k;[Tx-Ty|

<[Tx-Ty|
< a|Sx— Sy|+ b max{[Tx— Sx|, [Ty — Sy}

+cmax{[Sx— Sy, [Tx— x|, [Ty - Sy

- d maxffsx— Syl Tx—Sx Ty~ Syl > (Ty - ¥ + x5y
<afsx - Syl + bmax{Tx T, [T, Su [Ty ~T,y] + [T,y - Syl
+ cmax{JSx— Sy T T, + [T,x - SH Ty~ T,y + T,y - Sy}
d xS Syl 1T + [Tx - STy - Tyl + T,y - Sy

1
Ly Tyl Ty - S [T+ Tx -y
<alsx -]+ b1k, YT pl+[T,x Sk, YTy -+ T,y Syl

s omax x-Syl X~ pl+ T, x- 54, @~y - pl [T,y - i)
+d maxﬂ\Sx —Sy|, @—k,)[Tx— p||+|T,x = SX|, @ = k,)[Ty - p| + [T,y = SY|

1
(A=K = pl+ [T,y = S+ L=k, )Tx— p| + [T, x— Sy}
Hence for all j >N, we have

ITx~T, i< x-Syl bk, YT i+ [Tx— 6 @ )y ol T,y Syl
<l Syl+ bmax{(1—k T~ g+ x-S, (K, Ty ] + 1,y Sy}
emax{sx-Sya-k, T pl+ TS @k )y pl+ [y sy} €19

+ d maxfs— Sy L, T pl+ [Tx- S8 -k, Tyl + [T,y - Sy

%((1— Iy = pl+ [T,y = S|+ @k, T pl-+ [T, xSy}

Thus, since lim j—mej =1, from (1.14), for every N € N , we have
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[T x=T,y|<lim e T, x =T,
<1im j.,..[a}Sx - Sy
+bmax{(1—k)[Tx— pl+[T,x— ¥, 0=k [Ty - p [T,y - Sy}
+emax{isx—Sy|(L- k)T~ pll+ T, x(x) ¥, 0=k )Ty — pl T,y - Sy}
+d maxﬂ\Sx— Sy, @—k;)[Tx— p||+ [T, x—SX|, @—k;)[Ty - p| +[T,y - Sy|,

1
S @k)ITy = pf T,y =S|+ (K Tx— pl+ [T, x~ Syi)]

which implies

IT.x—T,y| = a}sx— Sy| + b max{[T, x — Sx| [T,y - Sy}
+C max{“Sx — Sy, |T,x = SX|, [T,y - SYH}

1
+d max{[Sx— Syl [T, x = S| [T,y = Syl > ( T,y — x|+ [T, x— S|}

forall X.Y € D; , therefore by Theorem 1.3.3 for every N € N, T, and S have a unique common fixed point X,
in D], ie,every ne N, we have

F(T)NFEE)={x}

Now, the compactness of D, ensures that {x,} has a convergent subsequence {Xni } which converges to
a point in D, since

Xp = To X, = kniTxni +(1- kni )p ....(1.15)
and T is continuous, we have as | —» 00 in(1.15) Z=Tz ie, ze D, N F(T).

Further, the continuity of S implies that
Sz=S(lim,,, x,)=lim,, Sx, =lim
ie., Z€ F(S), therefore, we have Z € D, " F(T) N F(S) and so.
D,NF(M)NF(S)#¢
This completes the proof.

As a consequence of our Theorem 1.3.4, we have the following result.
1.3.4.1 Corollary:

Let T and S be mapping of X into itself. Let T :0C —C and X € F(T) N F(S). Further,
suppose that T and S satisfy.
[Tx —Ty| < a||Sx— Sy| + bmax{[Tx — Sx|, [Ty — Sy]}

=Z

i—o Xni

1
+omax{[Sx— Syl [Tx— S, [Ty — Syl (Ty — x|+ [Tx— Syl

forallx,yin D, =D, U {X}U E, where

E= {q e X :Tx,,5%, = q,{x,.}c D}, ab,c>0, a+b+c=1, a+c <~/a, S is linear, continuous on D,
and T,S are compatible in D, if D, is nonempty, compact, convex and S(D,)=D, then

D, "F(T)NF(S)#¢.

This corollary is obtained by putting d = 0 in Theorem 1.3.4 and is the result of Sushil Sharma and
Bhavana Deshpande [17] d = 0.

Now, we obtain the following result due to Pathak, Cho and Kang [13] by putting ¢ = d=0 in Theorem
1.3.4.
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1.3.4.2 Corollary:
Let T and S be mappings of X into itself. Let

T:0C—>C ad XeF(T)NF(S).
Further, suppose that T and S satisfy.
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convex and S(D,)=D,, then
D, "F(M)NF(S)=¢.

Now, by puttinga =b = ¢ =0 in Theorem
1.3.4 we get the following result.

1.3.4.3 Corollary:
Let T and S be mapping of X into itself. Let

T:0C—>C and XeF(T)NF(S).
Further, suppose that T and S satisfy
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Tyl < max x-Sy -] [Ty syl Iyl Sy )

forallx,yin D, =D, U{X}U E . where
={ge X :Tx,, 5%, = q.{x,}c D,}.

0< d <1, if Sis linear, continuous on D, and T,S are
compatible in D, if D, is nonempty, compact,

convex and S(Da)=Da, then
D, "F(T)NF(S)#¢.
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