

International Journal of Advance and Applied Research

www.ijaar.co.in

ISSN - 2347-7075 Peer Reviewed Vol.12 No.4 Impact Factor - 8.141
Bi-Monthly
March - April 2025

From Visualization to Deduction: Understanding of Pythagorean Theorem
Among Middle-Stage Students with Van Hiele's Theory

Firdaus Tabassum¹ & Dr. Mohammed Kalimullah²

¹Ph.D. Research Scholar, Doctoral Fellow (NCERT)

Department of Teacher Education, Central University of South Bihar, Gaya.

²Assistant Professor, College of Teacher Education,

Darbhanga Maulana Azad National Urdu University, Hyderabad.

Corresponding Author - Firdaus Tabassum

DOI - 10.5281/zenodo.16750737

Abstract:

Despite geometry being consistently essential in the mathematics curriculum, enhancing logical reasoning, deductive skills, and problem-solving abilities, students are still failing to perform well in geometry. The National Education Policy (NEP, 2020) has stressed the importance of conceptual understanding rather than rote memorisation. In this study, a qualitative approach was adopted to investigate eighth-grade students' understanding level of the Pythagorean theorem through the lens of Van Hiele's Theory, from the Darbhanga district of Bihar. A sample of students was chosen based on academic performance, and they performed a self-designed test on the Pythagorean theorem. Technological tools such as GeoGebra were used for visual assistance, followed by individual interviews to assess understanding levels based on Van Hiele's theory. Data analysis revealed that high-achieving students reached all four Van Hiele levels, while medium-achieving students achieved the informal deduction level, and below-average students were limited to visualization. The study advocates for an enhanced emphasis on cultivating conceptual understanding in geometry, fostering profound learning instead of superficial memorisation.

Keywords: Pythagorean Theorem, Right Angle Triangle, GeoGebra, Van Hiele's Theory.

Introduction:

Geometry is a core element of the global mathematics branch, emphasizing the study of shapes, spatial relationships, and object properties (Luneta, 2014; Bora & Ahmed, 2018). The National Curriculum Framework (NCF, 2005) underscores the importance of geometry at various educational levels. A solid grasp of geometric concepts is essential for students to use geometry in everyday situations effectively. Furthermore, the National Education Policy (NEP, 2020) advocates deeply understanding concepts rather than relying on rote memorization.

Studying geometry enhances students' understanding of other areas of mathematical concepts and encourages connections across different areas of mathematics (Mammana & Villiani, 1998; Muschla & Muschla, 2000; NCTM, 2000). It improves logical reasoning, deductive and analytical thinking, and problemsolving skills, which are crucial tools for learning other fundamental skills. Geometry's relevance extends beyond mathematics into fields like trigonometry, measurement, calculus, and algebra. Many professionals, including physicists,

engineers, and land surveyors, geometric principles in their (Russell, 2014). Furthermore, geometric thinking significantly contributes to the cognitive development of learners across disciplines (Erdogan, Akkaya, & Celebi Akkaya, 2009). Therefore, developing strong spatial and geometric reasoning skills during the foundational and middle stages is essential for a smooth transition to more advanced mathematical studies.

Given the significance of geometry, many studies bv Abu & Abidin. (2013), Luneta, (2014), Alex & Mammen, (2016), Armah et al., (2018), and Armah & have examined teachers' Kissi, (2019) content knowledge pedagogical and strategies in teaching this subject, as well as their impact on students' understanding, using Van Hiele's geometric thought theory. Research has also addressed misconceptions in geometric concepts, such as understanding polygons and quadrilaterals among seventh graders (Ozkan & Bal, 2016). Other studies reveal the gap between pre-service teachers' informal and formal understanding of geometric shapes (Ozdemir Erdogan & Dur, 2014) and studies by Monaghan, (2000), Fujita & Jones, (2007), Okazaki & Fujita, (2007), Fujita, (2012), Halat & Yesil Dagli, (2016)highlights the challenges students face when the orientation of shapes like quadrilaterals changes.

Research by Kilic et al. (2007) indicates that fifth-grade students typically reach Van Hiele's visualization and analysis levels in tessellation understanding. However, Ngirishi Bansilal (2019) found that students in higher grades, such as tenth grade, often encounter difficulties in recognising properties of shapes and grasping their

relationships. Similarly, at the upper secondary level, misconceptions about triangles and quadrilaterals are common among students (Atebe & Schafer, 2008). Although Baiduri, Ismail, and Sulfiyah (2020) argue that some capable junior high students can perform well at the level 2, i.e., analysis,, while using Van Hiele's framework teaching quadrilaterals and triangles has proven to foster a deeper understanding.

Furthermore, Sáenz-Ludlow & Athanasopoulou (2008)found that technological tools like the Geometric Sketch Pad have shown great value in helping students grasp geometric properties by enabling them to create dynamic structures. Similarly, GeoGebra effectively enhanced geometric thinking, especially in achieving Van Hiele's levels 3 and 4 (Tutkun & Ozturk, 2013; Susan Ansah, Asiedu-Addo & Teye Kabutey, 2022). However, the application of GeoGebra has demonstrably practical in substantially enhancing understanding across primary and tertiary education levels (Kutluca, 2013), particularly concerning issues related to the Pythagorean theorem. Research suggests that students with high academic achievement can attain all four levels of Van Hiele's framework when instructed using GeoGebra (Wulandari et al., 2021). Henceforth, Atteh (2020) highlights the importance of using structured, learner-centred instructional sequences in geometry.

This study explores how middlestage students understand Pythagoras' Property and right-angled triangles through Van Hiele's theory and uses GeoGebra as a supporting tool. Pythagoras, a Greek philosopher, discovered a fundamental property of right-angled triangles, which was later formalized as the Pythagorean Theorem. This theorem plays an important role in many fields, underpinning the development of various tools and technologies that impact the modern world.

Van Hiele's Theory:

The study uses the Van Hiele theory of geometric thinking, developed by Pierre and Dina Van Hiele-Geldof in 1986. According to this theory, learners progress through five levels of geometric understanding arranged hierarchically. Visualization (learners observe geometric identify shapes bv their appearance), Analysis (learners understand shape properties but may struggle to explain how these properties relate to each other), Abstraction (learners draw logical conclusions about geometric shapes and organize their understanding), Deduction (learners apply deductive reasoning to connect general principles with specific examples), and Rigor (learners grasp formal logical deduction and are able to develop precise geometric proofs for comparison and verification).

This study aims to assess the level of middle-stage students' understanding of the Pythagorean theorem in this context, using GeoGebra to help them progress through Van Hiele's levels of geometric understanding.

The Objective of the Study:

1. To assess the understanding level of middle-stage students of the Pythagorean Theorem using Van Hiele's Theory.

Methodology:

The qualitative research was conducted in Darbhanga, Bihar, at a randomly chosen Government middle school in Garri Village, Jale block. From sections A and B, 18 eighth-grade students were randomly chosen based on their academic performance. A total of six students were randomly selected from high, average, and below-average groups. A paper-and-pencil test was constructed applying Van Hiele's levels of geometric understanding with expert consultation and administered. The test included multiplechoice and open-ended questions, with GeoGebra instruction. To assess understanding of the Pythagorean theorem, one-on-one face-to-face interviews with unstructured questions were conducted, each lasting five minutes, totaling about 100 minutes for the entire process. This method explored students' progression visualisation deduction from to theorem understanding the using traditional testing GeoGebraand supported instruction.

Table 1:
Pythagorean Theorem
According to Van Hiele's Theory, Level

Levels	Questions
0	Q: Which one is the Right-angled triangle?
(Visualization)	Q: Which one is the Square?
	Q. Which one is the Square.
	A C E B G I C L N D
	Q: Draw more Right-angled triangles & squares in your
	notebook.
1	Q: Measure the length and the angle of the triangle and the
(Analysis)	square with the help of a ruler and a protractor.
	Q: Write the measured lengths and angles on the sides of the triangle & square.
2	Q: Does your triangle fulfill the properties of being a right-
(Informal Deduction)	angled triangle?
	Q: If yes, then construct squares on each edge.
3	Q: Compute the area of the square that is constructed on the
(Deduction)	edges of a right-angled triangle?
	Q: Does the square on the hypotenuse equal the sum of the
	squares on the legs?
	Q: Is it fulfilling the Pythagorean property, i.e., $A^2=B^2+C^2$
	Q: Prove it with another drawn triangle.

^{*(}GeoGebra assisted Instruction was provided by the researcher at each level in solving the problems)

Example:

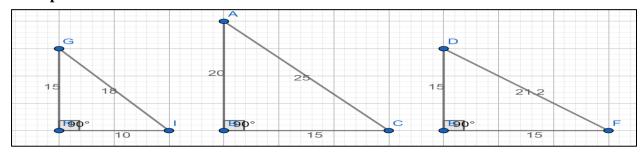


Figure 1: Right-angled triangles with lengths and angles on GeoGebra

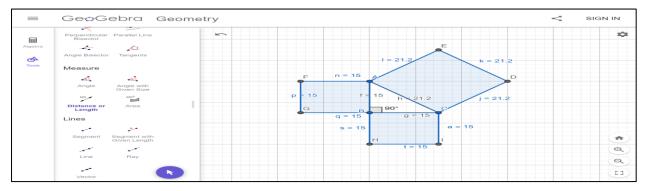


Figure 2: Right-angled triangles and squares with lengths and angles on GeoGebra

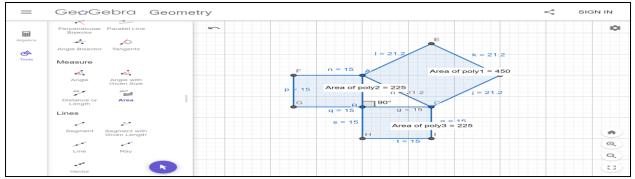


Figure 3:The square on the hypotenuse equals the sum of the squares on the legs.

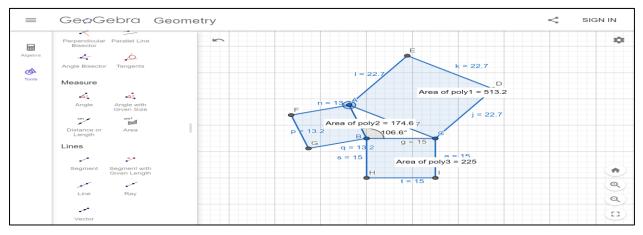


Figure 4: If the triangle is not right-angled, then the hypotenuse's square does not equal the sum of the squares of the legs.

Results and Discussion:

Data from paper-and-pencil tests and interviews were analysed through discourse analysis. Based on the test results on "If the Pythagorean Property Holds, the Triangle Must be Right-Angled" and interviews with the eighteen subjects, Van Hiele's geometric understanding level is analyzed.

High Performer Students:

The six high-performing students (S1, S2, S3, S4, S5, and S6) showcased their impressive understanding of right-angled triangles and the Pythagorean theorem. They skillfully identified right-angled triangles and squares during the paper-and-pencil test. Additionally, they happily drew triangles and squares of

various sizes in their notebooks, clearly showing their strong understanding of geometric visualization.

At the analytical level, the students precisely measured the sides of the triangles and squares, accurately documenting the lengths and marking the Transitioning to the informal deduction phase, they offered explicit justifications for the right-angled nature of the specified triangles and subsequently constructed squares on the triangles' sides. They computed the areas of these squares, enhancing their understanding of the correlation between the sides and the Pythagorean theorem.

The students demonstrated that the square on the hypotenuse equals the sum of the other two sides' squares, reaching Van Hiele's level 4 (Deduction). They illustrated that if the Pythagorean theorem is satisfied, the triangle is right-angled, substantiating their conclusions with multiple examples. Using GeoGebra at every stage augmented their comprehension and adeptly directed them through each degree of the assessment.

In the follow-up interviews, they were asked to draw a right-angled triangle with equal sides. S1, S3, and S5 attempted the drawing but concluded that it was impossible, correctly recognising the geometric limitation. Similarly, S2, S4, and S6 agreed that creating a right-angled triangle with equal sides was not feasible.

When questioned about rightangled triangles with two 90-degree angles, all students confidently asserted that such a triangle can only contain one 90-degree angle. They also clarified that the side opposite the 90-degree angle is the hypotenuse, which is always the longest side of the triangle. These answers demonstrate the students' strong grasp of geometric principles, their capacity to reason logically, and their thorough understanding of the Pythagorean theorem.

Average Performer Students:

The six students exhibiting average performance (S7, S8, S9, S10, S11, and S12) displayed a fundamental, however pragmatic understanding of right-angled triangles and the Pythagorean theorem. All students accurately recognised the right-angled triangle and square in the multiple-choice questions and adeptly illustrated triangles and squares of varying dimensions in their notebooks.

During the analytical phase, participants demonstrated proficiency in measuring the lengths of the triangle sides and squares, precisely annotating the edges in their notebooks. Nonetheless, in the context of informal deduction, while they were able to construct squares on the triangle's corners, they failed to effectively illustrate the rationale for the triangle being right-angled. In the follow-up iustifications interview, their considered satisfactory but lacked depth.

At the deduction level, S7, S8, and S9 attempted to calculate the area of the squares on the edges, although S10, S11, S12 struggled with this task. Furthermore, they were unable demonstrate or justify the Pythagorean property (i.e., $A^2 = B^2 + C^2$) for the rightangled triangle and did not try to apply the property to other triangles. GeoGebrabased instruction was crucial at each stage to help them progress and fully understand the concepts, but they needed more time and clarification to grasp everything.

During the interviews, students hesitated when answering questions about right-angled triangles with equal sides, indicating they needed more clarification. They correctly stated that a right triangle has only one 90-degree angle and confidently identified the hypotenuse, the side opposite the right angle, as always being the longest. At the same time, they demonstrated a basic understanding of right-angled triangle properties; their knowledge of more advanced geometric concepts was still evolving, highlighting the need for additional support and instruction to deepen their understanding.

Below Average Performer Students:

The six below-average performing students (S13, S14, S15, S16, S17, and S18) took initial steps in recognising right-angled triangles and squares during the visualisation stage. S13, S14, S15, S16, S17, and S18 correctly identified the shapes, while S14, S16, and S18 managed to draw various examples of right-angled triangles and squares in their notebooks. However, S15 struggled to produce further examples of these shapes, which hindered their progress during the test.

In the interviews, S13, S14, and S18 provided different examples of rightangled triangles and squares and their properties, indicating partial a understanding. However, the analysis stage proved more challenging. S16 attempted to measure the lengths of the triangle and square accurately, noting the dimensions on the edges, but S15 needed further clarification to complete this task. None of the students attempted the remaining questions at higher Van Hiele levels. However, during the interview, the students answered only a few questions, and their responses were often incomplete or unclear. They found it difficult to fully understand the concepts, as shown by their reluctance to explain their reasoning thoroughly. Although GeoGebra instruction was introduced at each stage,

these students needed additional support and time to grasp the material.

Therefore, these students solved the first three problems successfully, showing they had reached Van Hiele's Level 1 (Visualisation). However, their understanding remained at a basic level, i.e., Visualisation, requiring more specific guidance to progress to higher levels of geometric understanding.

Conclusion:

The study finds that high-achieving students effectively progressed through all four stages of Van Hiele's Theory in comprehending the Pythagorean theorem. GeoGebra's pedagogical assistance facilitated their seamless progression across levels, enhancing their capacity to perceive and reason through geometric concepts. Furthermore, GeoGebra-assisted instruction enabled pupils with average performance to attain the informal deduction level of Van Hiele's theory. Nonetheless, many had difficulties following the instructions or needed an alternative tempo to comprehend the topics successfully. These pupils made progress but required further help to attain a deeper understanding. Conversely, below-average children attained just the visualisation level when they could identify geometric shapes but struggled to advance further. undergoing Despite GeoGebra-based students training, some encountered difficulties adhering to the procedural stages and needed further organized coaching to enhance their understanding.

The results indicate that educators should emphasise conceptual learning rather than rote memorisation to comprehend geometric principles better. Computer-aided instruction should be incorporated into geometry education,

particularly utilising technologies such as GeoGebra, enhance students' to engagement with subjects. Educators can assist students in linking geometric properties to real-world applications by offering various ICT-based examples, thereby enriching their learning experience, and promoting more profound understanding of geometry.

References:

- 1. Abu, M. S., & Abidin, Z. Z. (2013). Improving the levels of geometric thinking of secondary school students using geometry learning video based on Van Hiele theory. International Journal of Evaluation and Research in Education, 2(2), 16–22.
 - https://doi.org/10.11591/ijere.v2i2.1 935
- 2. Alex, J. K., & Mammen, K. J. (2016).Lessons learnt from employing Van Hiele theory-based instruction secondary in senior geometry classrooms. school EURASIA Journal of Mathematics, Science and Technology Education, *12*(8). 2223-2236. https://doi.org/10.12973/eurasia.201 6.1228a
- 3. Ansah, S., Asiedu-Addo, S. K., & Kabutey, D. T. (2022). Investigating the effect of using GeoGebra as an instructional tool on Van Hiele's geometric thinking levels of senior high technical school students. *International Journal of Mathematics and Statistics Studies*, 10(1), 31–39.
- 4. Armah, R., & Kissi, P. (2019). Use of the Van Hiele theory in investigating teaching strategies used by College of Education geometry

- tutors. *EURASIA Journal of Mathematics*, *Science and Technology Education*, *15*, *1–13*. https://doi.org/10.29333/ejmste/1035
- 5. Atebe, H., & Schafer, M. (2008). "As soon as the four sides are all equal, then the angles must be 90° each": Children's misconceptions in geometry. African Journal of Research in Mathematics, Science and Technology Education, 12, 47–65.
 - https://doi.org/10.1080/10288457.20 08.10740634
- 6. Atteh, E. (2020). The nature of mathematics education: The issue of learning theories and classroom practice. *Asian Journal of Education and Social Studies*, 10(2), 42–49. https://doi.org/10.9734/AJESS/2020/v10i230265
- 7. Bora, A., & Ahmed, S. (2018). Secondary school students' attitude towards their learning geometry: A survey of Diphu Town secondary schools. *International Journal of Research and Analytic Review*, 5(3), 265–267.
 - https://eric.ed.gov/?id=ED590512
- 8. Erdoğan Halat, E., & Yesil Dagli, U. (2016). Preschool students' understanding of a geometric shape: The square. *Bolema: Boletim de Educação Matemática*, 30(55), 830–848. https://doi.org/10.1590/1980-4415v30n55a25
- 9. Erdogan, T., Akkaya, R., & Celebi Akkaya, S. (2009). The effect of the Van Hiele model-based instruction on the creative thinking levels of 6th grade primary school students. *Educational Sciences: Theory and Practice*, 9(1), 181–194.

1.08.003

- 10. Fujita, T. (2012). Learners' level of understanding of the inclusion relations of quadrilaterals and prototype phenomenon. *The Journal of Mathematical Behavior*, *31*, 60–72. https://doi.org/10.1016/j.jmathb.201
- 11. Fujita, T. & Jones, K. (2007). Learners' understanding of the definitions and hierarchical classification of quadrilaterals: towards theoretical framing. Research in Mathematics Education, 9(1 & 3-20.2), http://dx.doi.org/10.1080/147948000 08520167
- 12. Kılıç, Ç., Köse, N. Y., Tanışlı, D., & Özdaş, A. (2007). Determining the fifth grade students' Van Hiele geometric thinking levels in tessellation. *Elementary Education Online*, 6(1), 11–23.
- 13. Kutluca, T. (2013). The effect of geometry instruction with dynamic geometry software GeoGebra on Van Hiele geometry understanding levels of students. *Educational Research and Reviews*, 8(17), 1509–1518.
 - https://doi.org/10.5897/ERR2013.15 54
- 14. Luneta, K. (2014). Foundation phase teachers' (limited) knowledge of geometry. *South African Journal of Education*, 34(3), 71–86.
- 15. Mammana, C., & Villiani, V. (1998). Geometry and geometry-teaching through ages. In C. Mammana & V. Villiani (Eds.), *Perspectives on the teaching of geometry for the 21st century* (1–8). Kluwer Academic Publishers.

- 16. Monaghan, J. (2000). What difference does it make? Children's views of the differences between some quadrilaterals. *Educational Studies in Mathematics*, 42(2), 179–196.
 - https://doi.org/10.1023/A:10041750 20394
- 17. Muschla, J. A., & Muschla, G. R. (2000). Geometry teacher's activities kit: Ready-to-use lessons & worksheets for grades 6–12. John Wiley & Sons.
- 18. National Council of Educational Research and Training. (2005). National Curriculum Framework 2005. NCERT. https://ncert.nic.in/pdf/nc-framework/nf2005-english.pdf
- 19. National Council of Teachers of Mathematics. (2000). *Principles and standards for school mathematics*. NCTM.
- 20. National Education Policy. (2020). National Education Policy 2020. Ministry of Human Resource Development, Government of India. https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
- 21. Ngirishi, H., & Bansilal, S. (2019). An exploration of high school learners' understanding of geometric concepts. *Problems of Education in the 21st Century*, 77, 82–96. https://doi.org/10.33225/pec/19.77.8
- 22. Okazaki, M., & Fujita, T. (2007). Prototype phenomena and common cognitive paths in the understanding of the inclusion relations between quadrilaterals in Japan and Scotland. In J. Woo, H. Lew, K. Park, & D. Seo (Eds.), *Proceedings of the 31st*

- Conference of the International Group for the Psychology of Mathematics Education, 4, 41–48.
- 23. Ozdemir Erdogan, E., & Dur, Z. (2014). Preservice mathematics teachers' personal figural concepts and classifications about quadrilaterals. *Australian Journal of Teacher Education*, 39(6), 107-133. https://doi.org/10.14221/ajte.2014v3 9n6.1
- 24. Özkan, M., & Bal, A. (2017). Analysis of the misconceptions of 7th grade students on polygons and specific quadrilaterals. *Eurasian Journal of Educational Research*, 67, 161–182. https://doi.org/10.14689/ejer.2017.6
- 25. Russell, D. (2014). What is geometry? Retrieved July 20, 2025, from http://math.about.com/od/geometry/a/whygeom.htm
- 26. Sáenz-Ludlow, A., & Athanasopoulou, A. (2008). The GSP, as a technical-symbolic tool mediating both geometric conceptualizations and communication. In Semiotics in mathematics education, 195–214.

- https://doi.org/10.1163/9789087905 972 012
- 27. Sulfiyah, R., Baiduri, & Ismail, A. D. (2019). Analysis of students' conceptual understanding visualization phase in learning geometry by using spinning wheel media. **Mathematics** Education 139-151. Journals, 3(2),http://ejournal.umm.ac.id/index.php/ **MEJ**
- 28. Tutkun, O. F., & Ozturk, B. (2013). The effect of GeoGebra mathematical software on academic success and the level of Van Hiele geometrical thinking. *International Journal of Academic Research Part B*, 5(4), 22–28. https://doi.org/10.7813/2075-4124.2013/5-4/B.3
- 29. Wulandari, S., Syahbana, A., Tanzimah, T., Shang, Y., Weinhandl, R., & Sharma, R. (2021).Analysis of students' thinking level in solving Pythagoras' theorem problems based on Van Hiele's theory. Malikussaleh Journal of Mathematics Learning (MJML), 124-132. 4(2),https://doi.org/10.29103/mjml.v4i2.3 905