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Abstract: 

In this work, a circular plate composed of functionally graded piezoelectric material and 

a linked hygrothermal field is numerically depict to show the temperature, moisture, 

displacement, and stress distributions. The axis of the plate is positioned at the center of the 

connected field. As the radial distance increases, it is reasonable to suppose that the material's 

properties in the functionally graded piezoelectric material plate change exponentially. The 

coupled hygrothermal equations, which generate the coupled hygrothermal field throughout the 

radius of a revolving circular plate, must be solved before the dynamic equilibrium issue can be 

resolved. After then, the dynamic equilibrium problem may be resolved. The relationship between 

the circular plate's hygrothermal behaviors and its inner radius, angular speed, functionally 

graded index, and hygrothermal index is demonstrated numerically in the last section. Future 

designs of spinning FGPM circular plates in a coupled hygrothermal field may profit from the 

findings. 
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Introduction: 

The functionally graded 

piezoelectric material (FGPM), a sort of 

nonhomogeneous composite material, is 

designed to have its composition and 

properties vary continuously in space on a 

macroscopic scale [Mian1998]. Researchers 

whose fields of research include materials 

and engineering have taken a growing 

interest in the structural manufacturers of 

FGPM due to the amazing capabilities these 

materials have shown in engineering 

applications [Dai 2013]. Shechtman first 

identified quasicrystals (QCs) as novel types 

of solid materials in the early 1980s from the 

diffraction pattern of quickly cooling Al-Mn 

alloys. Due to its quasi-periodic structure, 

QCs have a variety of advantageous 

characteristics, including high hardness, high 

wear resistance, low adhesion, and low 

porosity. QCs are anticipated to be used as 

sensors in intelligent frameworks, as thin 

films, covering engine surfaces, thermal 

barrier coatings, and coating spacecraft 

wings due to their quasi-periodic atomic 

arrangement. QCs have drawn a lot of 

attention in a variety of research domains, 

including defect issues and mechanical 

behavior analysis in the layered smart 

structure, because of their special qualities 

and possible applications. [Li, yang, gao 

2019]. Many studies on different FGPM 

structural manufacturers can be found in the 

scholarly literature.  

Arani et al. [Arani2012] used the 

finite element method to conduct their 

research and generate three-dimensional 

solutions for closed and open hollow spheres 

subjected to an internal pressure and uniform 

temperature field. To provide an analytical 

solution to the axisymmetric problem of a 

long, radically polarised FGPM hollow 
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rotating cylinder, Dai et al. [Dai2012a] made 

use of ordinary integration. This allowed 

them to accomplish their goal. The dynamic 

electromagnet elastic response of the FGPM 

hollow sphere was then established by Dai et 

al. [Dai2012b] under the influence of 

coupled multi-fields. Mao and Fu 

[Mao2010] used the finite difference method 

to investigate the nonlinear dynamic 

response and active vibration control of the 

FGPM plate. In the presence of a supersonic 

aerodynamic force, Rezaee and Jahangiri 

[Rezaee2015] studied the nonlinear, chaotic 

vibrations and stability of a simply 

supported functionally graded piezoelectric 

rectangular plate with a bonded piezoelectric 

layer. The piezoelectric plate had a 

functionally graded piezoelectric layer. 

Based on the three-dimensional theory of 

piezoelectricity, Wang and colleagues 

[Wang2010] investigated the axisymmetric 

bending of circular plates with material 

properties that varied across the thickness. 

Li et al. [Li2011] used a direct displacement 

method to examine FGPM circular plate in 

three dimensions while the plate was 

subjected to bending and stress. Zhang and 

Zhong [Zhang2005] reported a three-

dimensional solution for the free vibration of 

FGPM circular plates. 

It is not difficult to find multi-

physical evaluations of homogeneous 

composites in the body of published 

research. For the dynamic problem of 

magneto-electro-elastic generically 

laminated beams, Milazzo [Milazzo2013] 

offered a brand-new one-dimensional model. 

Because earlier models were two-

dimensional, this one was created in 

response. Multilayered magneto-electro-

elastic plates that were subjected to a 

combination of clamped and free lateral 

boundary conditions were examined for free 

vibration by researchers Chen et al. 

[Chen2014] using a semi-analytical discrete-

layer technique. In an orthotropic laminated 

hollow cylinder that was subjected to 

thermal shock and a largely uniform 

magnetic field, Dai and Wang [Dai2005, 

Dai2006] made analytical conclusions on the 

transient response of magnetothermostress 

and perturbation of the magnetic field vector 

that were produced. Researchers who are 

interested in the multi-physical analysis of 

FGMs have been more numerous in recent 

years. Li et al. [Li2010] addressed the 

axisymmetric issue of FGM electro elastic 

cylinders with analytical modelling while 

making general adjustments to material 

properties. The issue was resolved using the 

Freedholm integral equation. The dynamic 

thermoelastic behaviour of a double-layered 

cylinder including a FGM layer when 

subjected to mechanical and thermal loads, 

respectively, was studied by Dai and Rao 

[Dai2013] using the Finite Difference 

Method and the Newmark Method. A simply 

supported, functionally graded rectangular 

plate was subjected to time-dependent 

thermal pressures, and Vel and Batra 

[Vel2003] used the power series approach to 

provide an analytical solution for the three-

dimensional thermomechanical 

deformations. This answer related to the 

three-dimensional thermomechanical 

deformations that took place. Dai and Dai 

[Dai2016] measured the displacement and 

stress fields within a hollow circular FGM 

disc that was spinning at an angular 

acceleration and experiencing a changeable 

temperature field. The disc was subjected to 

a changing temperature field while this was 

being done. 

Many scholars have also expressed 

interest in a multi-physical study of the 

FGPM. The experiment by Jamia et al. 

[Jamia2016] focused on two collinear 

mixed-mode limited-permeable cracks that 

were inserted into an infinite FGPM 

medium. Electro-mechanical loading 

sensitivity was built into the crack surfaces. 

Using a computational Laplace inversion 

technique, researchers Akbarzadeh et al. 

[Akbarzadeh2011] examined the thermo 
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piezoelectric response of an FGPM rod 

following exposure to a moving heat source. 

Both the FG effect and the 

piezoelectric effect are taken into account by 

FG piezoelectric QC (PQC) materials, which 

are anticipated to be employed as sensors 

and actuators to track and regulate the 

response of structures. Functionally graded 

PQCs can increase the reliability and 

dependability of piezoelectric devices in 

addition to realizing the conversion of 

mechanical energy into electrical energy. 

This inspired the presentation of an accurate 

solution for a FG layered two-dimensional 

(2D) PQC plate in this study. This inspired 

the presentation of an analyt solution for a 

FG layered two-dimensional (2D) PQC plate 

in this study. 

1. Formulation of Coupled Hygrothermal 

Field of Functionally Graded Cylinder 

and its material characteristics: 

Consider an infinitely long cylinder with 

hygrothermal conditions. The cylinder 

further increases the impact of heat retention 

or dissipation. Pressure and material 

characteristics are thought to remain 

constant across the cylinder. The coupled 

hygrothermal model for the functionally 

graded cylinder is given by, 

2( ) ( ) (( ) )p h m LV

T C
r c

t
r T hrD c

t
  

 
  





ò                                 (1) 

2 2( ) ( ) ( )m m m T
C

r c D r rC D
t

  





                                       (2) 
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2 2

2

2

2

1T T T

r r r z

   
  

  



 is the Laplacian operator, T is the temperature and  C is the 

moisture potential at time t, ( )hD r  and 

( )mD r
 
is the thermal diffusion coefficient 

and vapour diffusion coefficient under no 

absorption condition respectively. The heat 

and moisture capacity of the medium are 
pc  

and mc , respectively. The heat of 

evaporative phase change is denoted by the 

symbol LVh , ( )r is the material density, 

and   is the amount of heat released per unit 

mass of moisture. The thermogradient 

coefficient is denoted by the symbol  , 

while the ratio of the vapour diffusion 

coefficient to the total moisture diffusion 

coefficient is denoted by the symbol ò . 

Assume that the initial moisture and 

temperature of the material are 0C  and 0T .  

The power law dependance on the radial 

coordinate considering 0 as a constant factor 

of material property is given by, 

0 0 0( ) , ( ) , ( )n n n

h h m mr D r D D r D                              (3) 

The coupled diffusion governing Eqs. (1) 

and (2) additionally include certain source or 

sink terms. Eq. (1) represents the balance of 

thermal energy within the cylinder and Eq. 

(2) represent the balance of moisture within 

the medium. Because of the transition from 

liquid to vapour phase as well as to the heat 

of absorption or desorption, the last term in 

the governing equation (1), represents the 

heat sources or heat sink. The term part in 

this equation shows the moisture source or 

sink with regard to the temperature gradient. 

Using Eq. (3) in Eq. (1) and (2), we get 

2
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Define dimensionless variables as, 

0 0

0 0

*
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, ,
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r z Lt
t

r r r

 


 

 
 
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                                            (6) 

Using Eq. (6) in Eq. (4)- (5), after simplification we obtained the hygorthermoelastic model in 

dimensionless form as, 
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The thermal and moisture boundary conditions in dimensionless form without any heat source 

can be expressed as follows: 

0
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
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   1 2,0, ( ) , , ( )t t h t t                                           (14) 

   1 2,0, ( ) , , ( )t t h t t                                           (15) 

The initial condition for temperature and moisture is given by, 

( , ,0) 0    and ( , ,0) 0                                         (16) 

From this part we neglect (*) sign for the inconvenience. 

 

2. Solution of the Coupled Hygrothermoelastic Model: 

Let us define the integral transform given by E. Marchi and G. Zgrablich [1964] as  

     1 2, , d
b

p n
a

f n f S k k                                         (17) 

And its inversion is given by, 

 
 

 1 2, ,
p

p n

n n

f n
f S k k

c
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Where                            
2

1 2, , d
b

n p n
a

c S k k                                            (19) 
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  

                      (20) 

and  p nJ   &  p nG   are Bessel Functions of first and second kind respectively of order p. 

Also,
n  is the positive roots of equation  

       1 2 2 1, , , , 0p n p n p n p nJ k a G k b J k b G k a                       (21) 

The operational property for the Marchi-Zgrablich integral transform defined in Eq. (17) is given 

by, 
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Applying the transform defined in Eq. (17) to Eqs. (7), (8) and Eqs. (14)-(16) using boundary 

conditions given in Eqs. (10)-(13) in dimensionless form and operational property in Eq. (22) at 

0p  , we get 
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A finite Fourier sine transform [Debnath, Bhatta 2006] is defined by 

0
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with operational property given by, 
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Inverse Fourier sine transform of Eq. (29) defined as, 

1

,
2

( )sin( , , ) ,
m

m
g n t n m

h
g

h
t








 
   

 
                               (30) 

Applying finite Fourier sine transform defined in Eq. (28) to Eqs. (23), (24) and (27) with 

boundary conditions given in Eqs. (25)-(26) and using operational property defined in Eq. (29), 

we get 
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Now define the Laplace transform of a function ( )h t  as  

0

ˆ( ) [ ( )] ( ) , 0sth s L h t h t e dt s
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                                     (34) 

where s  is the Laplace parameter [Debnath, Bhatta 2006]. 

Applying laplace transform as defined in Eq. (34) to Eq. (31)-(32) applying condition in Eq. (33) 

and after simplification one can obtain 
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Eq. (35) and (36) represent the temperature and moisture distribution in Laplace domain 

respectively. 

Taking inverse Laplace transform of Eq. (35) and (36) we get, 
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Taking inverse fourier transform of Eqs. (37)-(38) using Eq. (30) we obtain 
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 (40) 

Now apply inversion formula defined in Eq. (18) to Eqs. (39) and (40), we get the temperature 

and moisture distribution as follows: 
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 (42) 

Formulation of Hygrothermoelastic Large 

Deflection of Cylinder: 

We generalized the Basuli’s equation of 

equilibrium for the transient hygrothermal 

distribution as follows in order to derive the 

large deflection equation of a heated 

cylinder based on Berger's approximations 

[S. Basuli, 1968 and Tara Dhakate, Vinod 

Varghese & Lalsingh Khalsa (2018)] as: 

2
12 2 2( )1 1 1
(1 )
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w

D

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
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                                      (43) 

Where 
2

2
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





 is Laplacian operator,  is the normal transverse deflection along the 

z-direction,   denotes Poisson’s ratio of the cylinder, 
3 2/12(1 )D Eh    is the flexural 

stiffness of the cylinder, 2
1  indicates Laplacian operator and 2

1  is normalizing constant of 

integration to be determined from 
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M g  is the hygrothermally induced resultant moment represented as 

[ ( ) ( ) ]1 0 2 0
0

h
M E z T T C C dzg                               (45) 

with   and E  are the coefficient of linear thermal expansion and Young’s Modulus of the 

material of the cylinder respectively. 

The result of the above heat conduction gives thermally induced resultant force defined as 

[ ( ) ( ) ]1 0 2 0
0

h
N E T T C C dzg                                (46) 

Equations (45) and (46) have to be solved for heated thin clamped supported annular cylinder 

along the edges for which the boundary conditions are 

0, 0
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w
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Substitute Eqs. (41) and (42) in Eqs. (45) and (46) we obtain hygrothermal moments and resultant 

forces respectively as, 
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Where 1

3 1 2( 1)m     and 1

3 1 2( 1)m      

Putting Eq. (48) in generalized Basuli’s equation of equilibrium given by Eq. (43), we get  
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Solution to the above Eq. (50) is given by,  
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Where ia  being the root of the equation [Singh, Prasad, Sidhiqui, 1981]. 

Simplifying Eq. (52) we get 

 0 0 0 00 0

02 2 2 2 2 2
1 1

0 01 0

2 3 3 1 2 3 3

2 2 2 2

2

[ ( ) ( )]2
cos s

( ) ( )

( 1)

( )( ) ]

in
( )[ ( )]

{ [ ( )

)

( ) ( )

( )(
exp

n n n n

m n
n n n n

n

J J a J a JET r m m
w m r

r ra m c J a

D D D D

D m h

h

b

D

      


    

          

 



 

 

 

     
       

    

        



 


 








D D D D

D
1 0 1 0 0 1 0 1

2 2 2 2 2 2

0 1 0 1 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

[ ( ) (

}

) ] [ ( ) ( ) ] ( )}[ ){ ](

n n n n n n n n

n n n n n n n

t aJ a K a bJ K aJ a k a bJ K

a J a J a b J J

b b b b

K a Kb b b

       
 

      

 
   

 

    

             (53) 

Eq. (53) represent hygrothermal large deflection of cylinder at an arbitrary point of the 

functionally graded cylinder. And Using Eq. (44) and (53) we can obtain displacement 

component. 

 

Conclusion: 

We describe the hygrothermal large 

deflection study of a hollow nano-cylinder 

made of functionally graded material (FGM) 

under a coupled hygrothermal field. The 

research findings might be characterized by 

the following conclusions: 

1. The FGM hollow nano-cylinder's 

temperature, moisture, displacement, 

and deflection distributions are affected 

by the time along the radius under the 

hygrothermal field. 

2. Both the inner and outer surfaces of the 

FG hollow cylinder are deflection-free.  

3. The analytical process described here is 

widely applicable in contrast to the 

method proposed by other researchers. 
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