
505 

 

International Journal of Advance and Applied Research 
www.ijaar.co.in 

 

ISSN – 2347-7075 Impact Factor – 8.141 
Peer Reviewed Bi-Monthly   

 Vol. 6  No. 18 March - April  - 2025  
 

Plane Symmetric Magnetized Dark Energy Cosmological Model in f(R,T) 

Gravity 
 

V. B. Raut1& S. A. Salve2 
1
Department of Mathematics,  

Mungsaji Maharaj Mahavidyalaya, Darwha – 445 202, Maharashtra, India 
2
Department of Mathematics,  

Jijamata Mahavidyalaya, Buldana – 443 001, Maharashtra, India 

Corresponding Author – V. B. Raut 

DOI - 10.5281/zenodo.14784834 
 

Abstract:  

In this study, we investigate a plane-symmetric cosmological model within the framework 

of        gravity, incorporating a magnetized dark energy component. The motivation behind 

this work stems from the growing interest in modified theories of gravity as viable alternatives to 

General Relativity (GR) in explaining the accelerated expansion of the universe. Our model 

considers a time-dependent deceleration parameter; the influence of magnetized dark energy is 

analyzed in detail, particularly in relation to its impact on the anisotropic behaviour of the 

universe. The behaviour of key cosmological parameters such as the Hubble parameter, energy 

density, and equation of state parameter is examined. Our findings suggest that        gravity 

provides a compelling framework for understanding the dynamical evolution of the universe, 

particularly in the presence of magnetized dark energy. The study emphasizes the importance of 

modified gravity theories in addressing the role of anisotropy in cosmic evolution. 

Keywords: - Plane symmetric space-time, magnetized dark energy,        gravity. 

 

Introduction: 

Theoretical studies have revealed 

that a significant portion of the universe is 

composed of Dark Energy (DE) and Dark 

Matter (DM). Various DE models are 

characterized by their Equation of State 

(EoS) parameter, denoted as   
 

 
. 

Observational astrophysical data suggest that 

this parameter is close to -1. When     , 

it corresponds to the cosmological constant, 

which represents vacuum energy and is 

considered the simplest and most widely 

accepted candidate for DE [1-3]. If     , 

it leads to the phantom DE model [4-6], 

whereas for the range      
  

 
, DE is 

described by the quintessence model [7-9]. 

The study of DE and its models within both 

General Relativity (GR) and Modified 

Theories of Gravity (MTG) has gained 

considerable research interest in recent 

years. 

Several researchers have contributed 

to the exploration of DE in different 

cosmological settings. Akarsu and Kilinc 

[10] examined the anisotropy parameter of 

expansion for the Bianchi type-III model. 

Sharif and Zubair [11] analysed the Bianchi 

type-I universe under the influence of 

magnetized anisotropic DE with a variable 

EoS parameter. Kumar and Yadav [12] 

investigated a spatially homogeneous and 

anisotropic Bianchi type-V universe filled 

with DE under the assumption of minimal 

interaction, applying a specific law of 

variation for the Hubble parameter, and 

concluded that DE is dominant in the present 

cosmic epoch. Additionally, Amirhashchi et 

al. [13] and Pradhan et al. [14] proposed DE 

models in an anisotropic Bianchi type-VI 
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space-time by considering constant and 

variable deceleration parameters, 

respectively. Saha and Yadav [15] derived 

exact solutions for a locally rotationally 

symmetric (LRS) Bianchi type-II DE model, 

illustrating the universe's transition from an 

initial decelerating phase to its current 

accelerating phase. Pawar et al. [16] studied 

magnetized DE cosmological models with a 

time-dependent cosmological term within 

the framework of Lyra geometry. 

Among various modifications to 

Einstein's theory,        gravity [17] has 

been attracting significant attention. In this 

theory, the gravitational Lagrangian is 

defined as an arbitrary function of the Ricci 

scalar   and the trace of the energy-

momentum tensor  . Sharif and Zubair [18] 

found that equilibrium thermodynamics is 

not feasible in        gravity. Katore et al. 

[19, 20] examined cosmological models 

incorporating DE within this framework. 

Rao and Neelima [21] formulated a Bianchi 

type-VI0 perfect fluid model using this 

theory. Chandel and Ram [22] generated a 

new set of field equation solutions for an 

anisotropic Bianchi type-III cosmological 

model with perfect fluid in        gravity. 

Chaubey et al. [23] further developed 

Bianchi-type cosmological models within 

the same framework. More recently, Sahoo 

et al. [24] investigated an axially symmetric 

space-time containing a perfect fluid source, 

while Chirde & Sheikh [25, 26] explored 

non-static plane symmetric space-time filled 

with DE, as well as the LRS Bianchi type-I 

universe featuring both decelerating and 

accelerating phases. Bhoyar et al. [27] 

examined a non-static plane symmetric 

cosmological model with magnetized 

anisotropic DE using a hybrid expansion 

law. Recent studies have delved into the 

interplay between anisotropic dark energy 

and        gravity, offering fresh insights 

into the universe's accelerated expansion and 

anisotropic characteristics. In a notable 

investigation, researchers examined a 

spatially homogeneous and anisotropic 

Bianchi type-I space-time filled with a 

perfect fluid within the        gravity 

framework. By adopting a specific 

functional form,                   , 

with            , they derived exact 

solutions to the gravitational field equations. 

Assuming a hybrid expansion law for the 

average scale factor, the study elucidated 

various cosmological parameters, shedding 

light on the universe's anisotropic evolution 

and the role of dark energy in this modified 

gravity context [28]. 

Another significant contribution 

explored the energy conditions within 

       gravity against an anisotropic 

background. Focusing on a spatially 

homogeneous and anisotropic Bianchi type-

VI0 universe, the authors derived the 

modified field equations pertinent to        

gravity. Their analysis of the energy 

conditions provided constraints on the model 

parameters, offering deeper comprehension 

of anisotropic dark energy's influence on 

cosmic evolution within this theoretical 

framework [29]. Collectively, these studies 

underscore the versatility of        gravity 

in modeling anisotropic cosmological 

scenarios, enhancing our grasp of dark 

energy's anisotropic properties and their 

implications for the universe's dynamic 

behavior. 

Motivated by the findings from this 

studies, this paper explores the properties of 

the plane symmetric space-time in the 

presence of magnetized anisotropic DE 

within the framework of        gravity.  

This paper is organized as follows: In 

section 2, we describe the brief review 

of         gravity. In section 3, we 

discussed the solution of the field equations. 

Sections 4, deals with some cosmological 

kinematical and physical parameters. Finally 

conclusions are summarized in the last 

section 5. 
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Formation of        Gravity: 

We assume that the action for MTG of the 

following form (Harko et al. (2011)) 

  
 

   
∫      √       ∫  √      ,

     (1) 

where        is an arbitrary function of the 

Ricci scalar  , and   be the trace of the 

stress energy tensor of the matter     and    

is the matter Lagrangian density. We define 

the stress energy tensor of matter as 

     
 

√  

  √     

    
,   

     (2) 

and its trace by          respectively. By 

assuming that    of matter depends only on 

the metric tensor components   , and not on 

its derivatives, we obtain 

           
   

    
.   

     (3) 

Now by varying the action S of the 

gravitational field with respect to the metric 

tensor components     , we obtain the field 

equations of        gravity as 

          
 

 
          

       (    
        )        

                     ,  

     (4) 

where 

                        

        
, 

     (5) 

where    
        

  
,    

        

  
 and    is 

the covariant derivative and     is the 

standard matter energy momentum tensor 

derived from the Lagrangian   . It may be 

noted that when              the 

equation (4) yields the field equation of 

     gravity. 

The problem of the perfect fluids described 

by an energy density  , pressure   and four 

velocities    is complicated since there is no 

unique definition of the matter Lagrangian. 

However, here we assume that the stress 

energy tensor of the matter is given by 

                  ,  

     (6) 

and the matter Lagrangian can be taken as 

      and we have 

      .    

         (7) 

With the use of equation (5) we obtain for 

the variation of stress-energy tensor of 

perfect fluid is 

              .   

     (8) 

Generally, the field equation also depends 

through the tensor     and on the physical 

nature of the matter field. Hence in case of 

       gravity depending on the nature of 

the matter source, we obtain several 

theoretical models corresponding to each 

choice of       . Assuming, 

              ,   

                (9) 

as a first choice where      is an arbitrary 

function of the trace of stress-energy tensor 

of matter, we get the gravitational field 

equations of        gravity from equation 

(4) as 

    
 

 
                     

                                

(10) 

where the prime denotes differentiation with 

respect to the argument. Using equation (8), 

above equation (10) become 

    
 

 
                     

[            ]                  

(11) 

 

Field equations and its solution: 

The line element of plane symmetric space-

time is given by 

                         ,

              (12) 

where the metric potentials   and   be the 

functions of time t only.  

We do not expect the fluids to have bulk 

motion on cosmological scales, hence we 

assume that the fluid is co-moving i.e. 
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      . The energy momentum tensor for 

anisotropic dark energy is given by 

  
      [             ] 

           [             ]  , 

              (13) 

where   is the energy density of the fluid, 

          and          are the 

directional pressure and EoS parameters of 

the fluid respectively along       axes 

respectively.      

However, the true nature of Dark Energy 

(DE) remains an enigma, and there is no 

fundamental or observational justification 

for restricting DE to exhibit only isotropic 

pressure. Given that the fluids are co-

moving, DE can also produce anisotropic 

pressure if its pressure is assumed to be 

proportional to its energy density. 

Consequently, the Equation of State (EoS) 

parameter of the DE fluid becomes 

direction-dependent. Therefore, the energy-

momentum tensor for a magnetized DE fluid 

can be expressed as follows: 

  
      [                

           ] 

           [                

                 ],                    

(14) 

where   be the deviation from the free EoS 

parameter (hence the deviation free 

pressure) on   -axis and   -axis and    

stands for energy density of magnetic field. 

When considering the magnetized DE 

source given in equation (14), the field 

equations (11) associated with the metric 

(12) result in the following set of linearly 

independent differential equations: 

 
 ̈

 
 

 ̇ 

  
 

 

  
  [             

      ]                        (15) 

 ̈

 
 

 ̈

 
 

 ̇

 

 ̇

 
  [             

          ]                  

(16) 

 
 ̇

 

 ̇

 
 

 ̇ 

  
 

 

  
                

                            (17) 

where the overhead dot denotes 

differentiation with respect to time t. 

We have the following equation from the 

Bianchi identity, 

 ̇       (
 ̇

 
  

 ̇

 
)  (  

 ̇

 
)     

and   ̇   
 ̇

 
    . 

             (18) 

 The field equations presented in the 

equations (15) to (17), involve complex 

nonlinear differential equations due to the 

modified gravitational framework 

incorporating both the Ricci scalar   and the 

trace of the energy-momentum tensor  . The 

presence of additional terms, such as  ,     

and directional pressure anisotropy 

parameters, further complicates their direct 

analytical solutions. To simplify these 

equations and make them more tractable, we 

impose the condition      . This 

assumption effectively eliminates the 

dependency on  , reducing the number of 

independent variables. Physically, this 

implies a specific relationship between the 

equation of state parameter   and the 

anisotropic deviation  , ensuring that any 

anisotropic pressure variation is 

counterbalanced by the equation of state 

parameter. 

 By applying this condition, the field 

equations can be significantly simplified, 

this assumption is particularly useful in 

studying cosmological models where 

anisotropic effects are minimal or where a 

symmetric evolution of the universe is 

desired. With this condition the physical 

parameters such as energy density, equation 

of state parameter and the deviation from 

equation of state parameter are respectively 

observed as 

  
 

       
(

 ̈

 
 

 ̈

 
 

 ̇

 

 ̇

 
 

 ̇ 

  
 

 

  
), 

              (19) 

     
 

        
( 

 ̈

 
  

 ̇

 

 ̇

 
), 

             (20) 
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(

 ̈

 
 

 ̇

 

 ̇

 
).  

              (21) 

Finally, here we have three 

differential equations (15)-(17) with six 

unknowns namely             . We 

define some physical quantities of the space-

time as 

Average scale factor     and volume     

respectively as 

  √    
      

   .              (22) 

The generalized mean Hubble parameter 

    is of the form 

  
 

 
(        )   

              (23) 

where          are the directional Hubble 

parameter in the direction of      nd   -axis 

respectively. 

Using equations (22) and (23), we obtain 

  
 

 

 ̇

 
 

 

 
(        )  

 ̇

 
. 

              (24) 

The expansion scalar     and shear scalar 

     are defined as follows 

     
  

 

 
(

 ̇

 
  

 ̇

 
),   

              (25) 

To find the solution of the field equation we 

need the extra conditions. Hence first we 

consider  

1) The relation between the metric 

potentials as  

    ,    

                         (26) 

and 

2) A time varying deceleration 

parameter 

Incorporating a time-varying 

deceleration parameter into cosmological 

models is essential for accurately depicting 

the universe's dynamic evolution, 

particularly its transition from deceleration 

to acceleration. This parameter, denoted as 

    , quantifies the rate of change of the 

cosmic expansion and is defined by the 

relation    
  ̈

 ̇ 
, where      represents the 

scale factor of the universe. A time-

dependent      allows for a more nuanced 

modeling of the universe's expansion 

history, accommodating periods of both 

acceleration and deceleration. In the context 

of modified gravity theories, such as        

gravity. Employing a time-varying 

deceleration parameter has yielded 

significant characteristics. For instance, 

Tiwari et al. [30] investigated a locally 

rotationally symmetric Bianchi type-I 

universe within        gravity, adopting a 

periodically varying deceleration parameter. 

Their findings demonstrated that this 

approach effectively captures the observed 

cosmic acceleration and provides a coherent 

description of the universe's evolution. 

Similarly, Sahoo et al. [31] explored the 

implications of a periodic deceleration 

parameter in        gravity, revealing 

oscillatory behaviors in cosmological 

parameters that align with observational 

data. These studies underscore the 

importance of integrating a time-varying 

deceleration parameter in modified gravity 

frameworks to enhance our comprehension 

of cosmic dynamics. In this case, we have 

considered the time special form of time 

varying deceleration parameter [32, 33] 

     
 

    
,   

              (27) 

where       is a constant. Consequently, 

the Hubble’s p r meter is 

    ( 
    ),   

              (28) 

where    is an integrating constant. Again, 

integrating the above equation, we have 

           
 

 .   

              (29) 

Hence, the metric potentials are obtained as 

           
  

      .   

              (30) 

           
 

      .   

              (31) 
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Physical and Kinematical behavior of the 

model: 

From the equation of conservation, 

we get the energy density of magnetic field 

as 

             
   

      ,  

              (32) 

where   be the constant of integration. 

In our analysis, we found that the energy 

density of the magnetic field in the presence 

of dark energy exhibits a positive yet 

decreasing behavior over time. This 

indicates that while the magnetic field 

contributes positively to the total energy 

density of the universe, its influence 

diminishes as the universe evolves. Such a 

trend aligns with the expectation that as 

cosmic expansion progresses, the intensity 

of the magnetic field weakens due to the 

stretching of field lines in an expanding 

spacetime. This behavior is clearly seen in 

the Fig. 1. 

 
Fig. 1: The behavior of the energy density of the magnetic field versus cosmic time. 

The decreasing nature of magnetic 

energy density suggests that its role in the 

late-time dynamics of the universe becomes 

less significant, reinforcing the dominance 

of dark energy in driving cosmic 

acceleration. This behavior is crucial in 

understanding the interaction between 

magnetized anisotropic dark energy and the 

evolution of large-scale structures, providing 

the possible dissipation mechanisms of 

cosmic magnetic fields in modified gravity 

frameworks. 

The energy density of the derived model is 

observed as 

 

 
          

   
 

      

             
(
                    (        )

 

                     

                                  
 

              

) 

 

In our analysis, we observed that the 

energy density of the model in the presence 

of dark energy exhibits a positive but 

decreasing behavior over time. This 

behavior is clearly seen in the  

Fig. 2. 

 
Fig. 2: The behavior of the energy density of the model versus cosmic time. 
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This implies that while dark energy 

maintains a dominant presence in the cosmic 

framework, its energy density gradually 

declines as the universe expands. Such a 

trend is consistent with many dark energy 

models, where the dilution of energy density 

occurs due to the continuous expansion of 

spacetime. The positive yet decreasing 

nature of the energy density suggests a 

dynamic evolution of dark energy, 

potentially aligning with quintessence or 

other time-dependent dark energy scenarios. 

This behavior plays a significant role 

in understanding the late-time acceleration 

of the universe and its future evolution. 

Moreover, it provides how dark energy 

interacts with other cosmic components, 

such as matter and radiation, within the 

framework of modified gravity theories, 

further enriching our comprehension of the 

universe's accelerating expansion. 

The equation of state parameter of the derived model is observed as 

     
                              

                       
 

In our analysis, we found that the equation 

of state parameter of the dark energy model 

exhibits a negative and decreasing behavior 

as the universe expands. This behavior is 

clearly seen in the Fig. 3. 

 
Fig. 3: The behavior of equation of state parameter of the model versus cosmic time. 

 

At the initial stage of expansion, 

when    , the equation of state parameter 

is  pproxim tely −0.65, indic ting th t d rk 

energy initially behaves like a quintessence-

type component. As the universe continues 

to expand, the equation of state parameter 

gradu lly decre ses, re ching  round −0.90, 

signifying a transition toward a more 

dominant dark energy influence. Eventually, 

at the present epoch, the equation of state 

parameter converges to -1, which 

corresponds to the cosmological constant 

(  ) and represents the well-established 

vacuum energy scenario. This evolution 

suggests that dark energy in the model 

dynamically evolves from a quintessence-

like phase to a cosmological constant phase, 

driving the accelerated expansion of the 

universe. Such behavior is consistent with 

observational data and provides a deeper 

understanding of the nature and evolution of 

dark energy within the framework of 

modified gravity theories. 

The deviation from the free equation of state 

parameter of the derived model is observed 

as 

 

  

 
                              

                       
 

In our analysis, we observed that the 

deviation from the free equation of state 

parameter in the dark energy model exhibits 
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a positive and increasing behavior as the universe expands.  

 
Fig. 4: The behavior of equation of state parameter of the model versus cosmic time. 

 

Initially, at      , its value is approximately 0.65, indicating a deviation from the 

standard equation of state parameter. As the universe expands, this deviation gradually increases, 

reaching around 0.85, suggesting a growing departure from the conventional dark energy 

behavior. Eventually, at the present epoch, it approaches 1, indicating that the dark energy model 

evolves toward a state with a stronger deviation from a free equation of state parameter. This 

increasing behavior highlights the dynamical nature of dark energy, suggesting that it does not 

remain constant over cosmic time but instead evolves in response to the expansion of the 

universe. 

Furthermore, the existence of this deviation suggests the presence of anisotropy in the 

cosmic evolution. In an isotropic universe, the equation of state parameter is expected to be 

uniform in all directions; however, a deviation from its free form implies directional dependence, 

leading to anisotropic pressure distribution. This anisotropy could arise due to the influence of 

primordial magnetic fields, anisotropic expansion, or interactions between dark energy and other 

cosmic components. The persistence of such anisotropy throughout cosmic evolution could 

provide valuable insights into the underlying nature of dark energy and its role in the large-scale 

structure formation of the universe. Understanding this anisotropic behavior is crucial in refining 

cosmological models and testing the validity of modified gravity theories. 

The Hubble’s p r meter  nd the exp nsion sc l r of the model is observed  s 

      {  (  
 

        
)} 

In our analysis, we found that the expansion scalar is a function of time and exhibits a 

positive decreasing behavior as the universe expands (See Fig.5, blue curve). The expansion 

scalar quantifies the rate at which the volume of a given region in the universe changes over time. 

Initially, at the early stages of cosmic evolution, the expansion scalar has a higher value, 

indicating a rapid expansion. However, as the universe evolves, the expansion rate gradually 

slows down, leading to a decreasing expansion scalar. This behavior is consistent with the 

standard cosmological model, where the expansion rate was much higher in the early universe 

due to dominant radiation and matter contributions, but as dark energy takes over in the later 

stages, the expansion becomes more controlled. The positive nature of the expansion scalar 

ensures that the universe continues to expand. 
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Fig. 5: The beh vior of exp nsion sc l r (blue curve)  nd the Hubble’s p r meter (red curve) of 

the model versus cosmic time. 

Our analysis also indicates that the 

(See Fig.5). is a function of time and follows 

a similar positively decreasing trend as that 

of expansion scalar as the universe expands 

(See Fig.5 red curve). The Hubble parameter 

represents the rate of expansion of the 

universe at a given time and is crucial for 

determining cosmic evolution. In the early 

universe, the Hubble parameter had a higher 

value, reflecting the rapid expansion 

following the Big Bang. As time progresses, 

the Hubble parameter decreases, implying a 

slower expansion rate, although it remains 

positive, ensuring continuous cosmic 

expansion. This decline is attributed to the 

transition from a radiation and matter-

dominated universe to a dark energy-

dominated phase. The decreasing nature of 

the Hubble parameter also suggests a 

gradual approach toward a more stable 

expansion rate in the late universe, 

potentially converging to a constant value in 

the case of a de Sitter-like future. This 

behavior plays a fundamental role in 

understanding cosmic acceleration and the 

influence of dark energy within the 

framework of general relativity and 

modified gravity theories. 

The deceleration parameter of the model is 

observed as 

     
 

               ⁄   
 

In our analysis, we found that the 

deceleration parameter ( ) is a function of 

time and exhibits a negatively decreasing 

behavior as the universe expands (See Fig. 

6). Initially, at    , the deceleration 

parameter starts at approximately -0.80, 

indicating that the universe is already in an 

accelerated expansion phase. As time 

progresses and the universe expands, q 

continues to decrease and asymptotically 

approaches -1 at    . This trend suggests 

a transition toward a de Sitter-like 

expansion, where dark energy dominates 

completely, leading to an exponential 

cosmic acceleration. 

Physically, the deceleration 

parameter characterizes whether the universe 

is accelerating or decelerating. A positive   

would indicate a decelerating universe, 

dominated by matter or radiation, while a 

negative   confirms an accelerated 

expansion driven by dark energy. The 

observed behavior of   in our study aligns 

with current cosmological models where 

dark energy, modeled as a cosmological 

constant (  ), gradually dominates the 

universe's dynamics. The approach of   

toward -1 suggests that the universe may 

eventually evolve into a state of perpetual 

acceleration, resembling a de Sitter 

expansion scenario. This result is crucial in 

understanding the fate of the universe and 

supports the idea that dark energy plays a 
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fundamental role in driving cosmic 

acceleration. 

 

Discussion and Concluding Remark: 

Our investigation into the plane-

symmetric magnetized dark energy 

cosmological model within the framework 

of        gravity provides significant 

insights into the evolution of the universe. 

The study highlights the role of modified 

gravity in explaining the late-time 

accelerated expansion of the cosmos and 

presents a compelling case for incorporating 

anisotropic effects into cosmological model 

by considering a time-dependent 

deceleration parameter. 

One of the key findings of our study 

is the behavior of the energy density of dark 

energy, which remains positive while 

exhibiting a decreasing trend as the universe 

expands. This result is consistent with the 

idea that dark energy dominates the late-time 

dynamics of the cosmos, driving its 

accelerated expansion. Furthermore, the 

equation of state parameter for dark energy 

is observed to be negative and decreasing 

over time, asymptotically approaching -1. 

This beh vior  ligns with the ΛCDM model 

and supports the hypothesis that dark energy 

behaves similarly to a cosmological constant 

at present times. 

The deceleration parameter, which is 

a crucial indicator of cosmic expansion 

dynamics, also shows significant variation 

over time. At early times, its value is around 

-0.80, indicating a phase of decelerated 

expansion. However, as the universe 

evolves, the deceleration parameter 

gradually decreases and asymptotically 

reaches -1, signifying an eventual transition 

to a de Sitter-like expansion. This behavior 

confirms that our model successfully 

captures the essential features of cosmic 

evolution observed in modern astrophysical 

data. 

Another crucial aspect of our study 

is the examination of the deviation from a 

free equation of state parameter. Our 

analysis indicates that this deviation exhibits 

a positive increasing behavior at the initial 

stages of cosmic evolution, with its value 

close to 0.65 at      . As the universe 

expands, this deviation increases up to 0.85 

and eventually approaches 1 at present 

times. This finding suggests that deviations 

from the standard equation of state may play 

a crucial role in determining the anisotropic 

nature of the early universe. Such 

anisotropies are expected to leave imprints 

on cosmic structures and may be observable 

through large-scale anisotropic distributions 

in the cosmic microwave background 

radiation. 

The presence of a magnetized dark 

energy component adds another layer of 

complexity to the model. Our results 

indicate that an anisotropic magnetic field 

can influence the dynamics of cosmic 

expansion by modifying the evolution of 

cosmological parameters. In particular, the 

introduction of a magnetized component 

enhances the anisotropic nature of the 

model, distinguishing it from standard 

isotropic dark energy models. This 

observation aligns with several previous 

studies that have suggested that early-

universe anisotropies, potentially induced by 

primordial magnetic fields, could have 

played a role in shaping cosmic structures. 

Furthermore, our analysis of the 

expansion scalar and the Hubble parameter 

reveals a consistent pattern. Both parameters 

are found to be time-dependent and exhibit a 

decreasing trend as the universe expands. 

The expansion scalar, which provides a 

measure of the rate of expansion, shows a 

gradual decrease over time, indicating a shift 

from an initial rapid expansion phase to a 

more stable accelerated expansion. 

Similarly, the Hubble parameter follows a 

decreasing trend, further reinforcing the 

notion that the universe is evolving towards 

a steady expansion rate governed by dark 

energy dominance. 
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Overall, our study reinforces the 

viability of        gravity as an alternative 

framework for explaining cosmic 

acceleration. The presence of anisotropic 

dark energy, coupled with a magnetized 

field, introduces novel features that 

distinguish this model from standard 

isotropic cosmologies. Our findings suggest 

that anisotropic effects should not be 

neglected in cosmological modeling, as they 

may have played a crucial role in shaping 

the universe’s l rge-scale structure. 

In conclusion, our study provides a 

comprehensive analysis of a plane-

symmetric cosmological model within 

       gravity, emphasizing the 

significance of magnetized dark energy and 

anisotropic effects. The results obtained in 

this research contribute to the ongoing 

efforts to develop alternative cosmological 

models that can address the limitations of 

the st nd rd ΛCDM p r digm. As future 

observational techniques become more 

sophisticated, models incorporating 

anisotropic dark energy and modified 

gravity theories may offer a more complete 

understanding of the fundamental nature of 

our universe. 
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