
929

International Journal of Advance and Applied Research
www.ijaar.co.in

ISSN – 2347-7075 Impact Factor – 8.141
Peer Reviewed Bi-Monthly

 Vol. 6 No. 22 March - April - 2025

RAG In Research: Exploring The Intersection of Retrieval and Generation

Vanita B. Mhaske1 & Rhishikesh S. Kadam2
1Department of Computer Science, PVGCOSC, Pune, India.

2Independent Researcher Pune, India.

Corresponding Author – Vanita B. Mhaske

Abstract:

In today’s world of information overload, it’s essential to manage data efficiently and get

useful insights from various sources. Retrieval-Augmented Generation (RAG) systems assist by

combining methods to retrieve relevant information with models that generate clear and precise

answers based on that information. This approach makes it easier to access and understand the

information we need. By breaking documents into chunks and embedding them, the system

enables fast and targeted retrieval of relevant information from large document collections,

saving time compared to reading full documents. Chunks preserve contextual boundaries within

the text, so retrieved information retains coherence and relevance, helping the generative model

(like LLaMA 3) create meaningful answers without losing essential context. RAG enhances the

generative power of language models by integrating information retrieval, enabling more

accurate and contextually rich responses in natural language query systems. We have access to a

vast amount of research data, which greatly contributes to our knowledge. However, it is not

always feasible to read every paper to answer specific questions. To address this, we

implemented Retrieval-Augmented Generation (RAG), a system that allows you to load relevant

research papers and ask any questions related to the topics covered in those documents. This

enables efficient access to information without needing to manually review each paper. To build

this system, we use the Sentence Transformer and LLaMA 3 model.

Keywords: Retrieval-Augmented Generation (RAG), Question-Answering System, Information

Retrieval, Language Generation, Similarity Search, Embeddings, Vector Database

Introduction:

RAG is basically a retrieval system

through which we can retrieve content from

a single or multi document. There are already

many more techniques which are helpful.

These include Traditional Information

Retrieval (IR), Embedding- based, Retrieval

(Dense Retrieval), Sequence-to-Sequence

Models, Transformers (e.g., BERT, GPT,

T5, BART), Question Answering (QA)

Systems, Summarization Models, Topic

Modeling, Text Classification, Named Entity

Recognition (NER). but there are some

drawbacks too. Many are Struggling with

semantic understanding [1] , some require

more computational power than traditional

IR techniques [6]. Some require fine-tuning,

and can sometimes generate irrelevant or

incorrect information [7]. QA may fail to

answer questions that require deeper

reasoning [11]. Extractive methods may not

provide accurate answer, and abstract methods

can sometimes create incorrect or incomplete

summaries [4]. Each technique has its own

strengths, weaknesses, and best-use

scenarios. Techniques like RAG, try to

overcome the problem. Multi-Document

Question Answering (MDQA) is an NLP

task that involves answering questions based

on a collection of multiple documents on the

same topic, using a language model to

DOI - 10.5281/zenodo.15533920

http://www.ijaar.co.in/

IJAAR Vol. 6 No. 22 ISSN – 2347-7075

Vanita B. Mhaske & Rhishikesh S. Kadam

930

process and synthesize relevant information

from the documents to generate accurate and

coherent answers.

We are surrounded by an ever-

expanding body of research data, which

continuously adds to our collective

knowledge. However, with the sheer volume

of information available, it becomes

increasingly challenging to read every single

paper to find answers to specific questions.

Manually sifting through hundreds or

thousands of papers for relevant information

is time-consuming and inefficient, especially

when the information is dispersed across

multiple sources.

To address this challenge, we implemented

RAG– an advanced system designed to

streamline the process of accessing research

insights. RAG combines information retrieval

techniques with generative models, allowing

you to load a set of relevant research papers

into the system. Once these documents are

loaded, users can ask any question related to

the topics covered in the papers. The system

uses the knowledge from the papers to

retrieve relevant content and generate

accurate, context-aware responses.

This approach eliminates the need to

read entire documents, as the system

efficiently identifies and retrieves only the

information that is most pertinent to the

query. With RAG, users can gain quick and

precise answers, making research more

accessible and less time-consuming. It

enables researchers, students, and

professionals to interact with vast amounts

of information in a more intuitive and

efficient way, leveraging the full potential of

modern language models and retrieval

techniques.

1. RAG System:

The RAG system is an advanced

framework that combines information

retrieval and text generation to enhance the

ability of language models to handle

knowledge-intensive tasks. The process can

be broken down into a pipeline that

integrates document ingestion, embedding

creation, embedding storage in a vector

database, querying through information

retrieval techniques, and answer generation

using a language model.

Document Ingestion:

Figure 1: RAG System

IJAAR Vol. 6 No. 22 ISSN – 2347-7075

Vanita B. Mhaske & Rhishikesh S. Kadam

931

The first step involves loading all

relevant documents into the system. These

documents can be in various formats such as

text files, PDFs, or other types of

documents. The content of these documents

is extracted to make it available for further

processing in the system.

Cleaning and Preprocessing:

After ingestion, the text is cleaned to

remove unwanted elements, such as special

characters, headers, footers etc.

Preprocessing may also involve standardizing

the text by performing operations like

tokenization, which breaks the text into

smaller components (e.g., words or sentences

tokenization), and normalization, which

ensures consistency across the data by, for

example, converting text to lowercase.

Text Chunking:

In this step, the cleaned and

preprocessed text is divided into smaller

chunks or segments. These chunks can be

created based on specific size limits or

natural boundaries within the text (e.g.,

paragraphs or sentences). The key goal is to

break the content into smaller, manageable

pieces that maintain the context of the

original text, ensuring that information stays

relevant within each chunk.

Embedding Generation:

Each text chunk is then converted

into a numerical vector representation,

known as an embedding. This transformation

captures the semantic meaning of the text,

allowing it to be represented as a point in a

high-dimensional space. The embedding

process enables the system to handle text in

a way that supports efficient similarity

searches during query processing.

Storing Embeddings:

The generated embeddings are

stored in a vector database along with

metadata that provides additional context

about the source of the content, such as the

document from which the chunk was taken.

This enables the system to quickly access

and retrieve relevant embeddings during the

search process, making the retrieval step

faster and more efficient.

Information Retrieval:

When a user submits a query, the

system generates an embedding for the

query and compares it to the embeddings

stored in the vector database. Using

similarity measures, such as cosine

similarity, the system identifies the most

relevant text chunks that are similar to the

query. The top relevant chunks are retrieved

to ensure the response is based on the most

pertinent information available.

Answer Generation:

After retrieving the relevant chunks,

the system passes this information to a

generative language model. The model

synthesizes the content from the retrieved

chunks and generates a coherent,

contextually relevant answer to the user’s

query. This response is crafted to be

informative and aligned with the context of

the retrieved data, ensuring that the answer

is accurate and useful.

2. Procedure:

Step 1: Document Ingestion:

In this step, we ingest multiple

research paper PDFs by first loading each

document from the specified directory. These

documents are parsed and stored in a

structured format as Document objects, each

containing the raw page content and essential

metadata (e.g., document source, title,

publication year). The document ingestion

process ensures that all relevant research

papers are captured and prepared for further

processing, allowing the system to handle

diverse types of content efficiently. The

documents are then made accessible for

subsequent steps, such as cleaning,

chunking, and embedding creation. Below

are the five research papers used for this

process.

IJAAR Vol. 6 No. 22 ISSN – 2347-7075

Vanita B. Mhaske & Rhishikesh S. Kadam

932

Table 1: Research Papers on Deep Learning Models

Sr. No. Research Paper Name

1 A Comprehensive Overview and Comparative Analysis on Deep Learning Models [8]

2 Attention Is All You Need [10]

3 Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks [2]

4 Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and

Applications [5]

5 Sequence to Sequence Learning with Neural Networks [9]

Step 2: Text Cleaning and pre-processing:

In this step, the raw content of the

loaded research papers is cleaned to ensure

high-quality text for further processing. The

cleaning process involves removing

unnecessary whitespace, special characters,

non-alphanumeric symbols, and other

irrelevant elements from the text.

Additionally, redundant spaces and

formatting issues are addressed to ensure the

text is properly structured and consistent.

This step improves the quality of the text,

making it suitable for chunking, embedding

creation, and other subsequent tasks.

Step 3: Documents Chunking:

After cleaning, the documents are

split into smaller, manageable chunks of text

to facilitate efficient processing. A method

like Recursive Text Splitter is used to

segment each document into chunks,

ensuring each chunk maintains a clear

context. To avoid losing meaning at chunk

boundaries, an overlap of 50 tokens is added

between adjacent chunks, preserving

continuity across sections. Metadata, such as

the document’s filename, title, or publication

details, is attached to each chunk, allowing

easy tracking of its source. This chunking

process helps the system handle large texts

effectively while retaining key contextual

links.

Figure 2: Chunk Document

Step 4: Embedding Generation:

Load a pre-trained language model

(e.g., sentence-transformers/all-MiniLM-L6-

v2) using Hugging Face. This model

converts each chunk into dense vector

embeddings representing the chunk’s

semantic meaning. Apply the embedding

model to generate vector representations for

each text chunk. These embeddings make it

easier to perform similarity searches based

on the semantic content of each chunk.

Step 5: Store Embeddings in a Vector

Database:

Once document chunks have been

created and transformed into embeddings,

these embeddings are stored in a vector

database, such as Chromadb. The vector

store allows for efficient similarity searches

and fast retrieval of relevant data by

indexing the embeddings in a structured,

searchable format. Each chunk’s embedding

is stored along with a unique identifier

(UUID) and relevant metadata, including the

original document’s title or source of the

document.

IJAAR Vol. 6 No. 22 ISSN – 2347-7075

Vanita B. Mhaske & Rhishikesh S. Kadam

933

Figure 3: Store Embeddings in a Vector Database

Step 6: Extract Unique Document Sources

and Perform Similarity Search for

Source:

In this step, the system identifies unique

document sources by extracting metadata

from each processed chunk, such as

filenames or document titles, to create a

list of distinct sources. This helps in

organizing the retrieval process by

document origin. For each source, the

system uses the user’s query to perform a

similarity search within the vector database,

retrieving the two most relevant chunks per

document.. These two chunks from each

source are then combined to create an

information-dense block for that source.

This step ensures that the system can access

the most relevant sections from each

document, providing a focused response to

the user’s query.

Figure 4: Retrieved Document

Step 7: Generate Source-Specific Answers

and Final Response:

In this step, the system uses the

LLaMA3 (inference taken using the Groq

API) model to process the retrieved chunks

for each source. Each set of combined

chunks for a specific research paper is

passed to the model, along with the user’s

query, to generate an answer specific to that

source. The LLaMA3 model provides an

answer for each document, ensuring

responses are tailored to the content of

individual sources.

Once the source-specific answers are

generated, they are combined into a unified

context. This combined context, containing

the answers for each source, is then fed back

to the LLaMA3 model. The model generates

a final answer that synthesizes the

information from all sources, offering a

comprehensive and cohesive response to the

user’s query. This approach enhances the

accuracy and depth of the final answer by

incorporating insights from each relevant

document.

Step 8: Save and Display the Final

Answer:

In this final step, the system saves

the generated answer in a structured format

to provide a clear, well-organized response

to the user’s query. The comprehensive

answer, which integrates insights from all

processed sources, is stored in a text file,

ensuring it is easily accessible for future

reference or further analysis.

IJAAR Vol. 6 No. 22 ISSN – 2347-7075

Vanita B. Mhaske & Rhishikesh S. Kadam

Result:

Query:

Figure 5: Question asked by User

Answer:

Figure 6: Answer Given by RAG System

Conclusion:

There are many ways to create a

question-answering system, and each

approach has its own drawbacks and

benefits. Retrieval-Augmented Generation

(RAG) is one such method through which

we can generate precise answers in a

question-answering system. It’s actually

hybrid method means a combination of

Extractive and Abstractive [3]. RAG is one

of these methods, combining both extractive

and abstractive techniques for improved

performance. In RAG, information retrieval

(via ChromaDB) fetches the relevant chunks,

and a generative model (like LLaMA3)

synthesizes these chunks to produce a

coherent, natural answer. This hybrid

approach ensures the final answer is

contextually rich, more accurate, and aligned

with the user’s query.

References:

1. James Bergstra and Yoshua Bengio.

Random search for hyper-parameter

optimization. Journal of machine

learning research, 13(2), 2012.

2. Rahul Dey and Fathi M Salem. Gate-

variants of gated recurrent unit (gru)

neural networks. In 2017 IEEE 60th

international midwest symposium on

circuits and systems (MWSCAS),

pages 1597–1600. IEEE, 2017.

3. Bhagat Gayval and Vanita Mhaske.

Evaluation of descriptive probability

approach, cosi pretrained mo. Journal

of Scientific Research, 67(2), 2023.

4. M Lewis. Bart: Denoising sequence-

to-sequence pre-training for natural

language generation, translation, and

comprehension. arXiv preprint

arXiv:1910.13461, 2019.

934

IJAAR Vol. 6 No. 22 ISSN – 2347-7075

Vanita B. Mhaske & Rhishikesh S. Kadam

5. Ibomoiye Domor Mienye, Theo G

Swart, and George Obaido. Recurrent

neural networks: A comprehensive

review of architectures, variants, and

applications. Information, 15(9):517,

2024.

6. Payal Mittal. A comprehensive

survey of deep learning-based

lightweight object detection models

for edge devices. Artificial

Intelligence Review, 57(9):242, 2024.

7. Dinidu Sandaruwan, Subha Fernando,

and Sagara Sumathipala. Neural

machine translation approach for

singlish to english translation. The

International Journal on Advances in

ICT for Emerging Regions, 14(03):36–

42, 2021.

8. Farhad Shiri, Thinagaran Perumal,

Norwati Mustapha, and Raihani

Mohamed. A comprehensive overview

and comparative analysis on deep

learning models: Cnn, rnn, lstm, gru.

ArXiv, abs/2305.17473, 2023.

9. I Sutskever. Sequence to sequence

learning with neural networks. arXiv

preprint arXiv:1409.3215, 2014.

10. A Vaswani. Attention is all you need.

Advances in Neural Information

Processing Systems, 2017.

11. Zichao Yang, Diyi Yang, Chris Dyer,

Xiaodong He, Alex Smola, and

Eduard Hovy. Hierarchical attention

networks for document classification. In

Proceedings of the 2016 conference of

the North American chapter of the

association for computational

linguistics: human language

technologies, pages 1480–1489, 2016.

935

