
929 

 

International Journal of Advance and Applied Research 
www.ijaar.co.in 

 

ISSN – 2347-7075 Impact Factor – 8.141 
Peer Reviewed Bi-Monthly   

 Vol. 6 No. 22 March - April - 2025  
 

RAG In Research: Exploring The Intersection of Retrieval and Generation 

 

Vanita B. Mhaske1 & Rhishikesh S. Kadam2 
1Department of Computer Science, PVGCOSC, Pune, India.  

2Independent Researcher Pune, India.  

Corresponding Author – Vanita B. Mhaske     

 

 

Abstract: 

In today’s world of information overload, it’s essential to manage data efficiently and get 

useful insights from various sources. Retrieval-Augmented Generation (RAG) systems assist by 

combining methods to retrieve relevant information with models that generate clear and precise 

answers based on that information. This approach makes it easier to access and understand the 

information we need. By breaking documents into chunks and embedding them, the system 

enables fast and targeted retrieval of relevant information from large document collections, 

saving time compared to reading full documents. Chunks preserve contextual boundaries within 

the text, so retrieved information retains coherence and relevance, helping the generative model 

(like LLaMA 3) create meaningful answers without losing essential context. RAG enhances the 

generative power of language models by integrating information retrieval, enabling more 

accurate and contextually rich responses in natural language query systems. We have access to a 

vast amount of research data, which greatly contributes to our knowledge. However, it is not 

always feasible to read every paper to answer specific questions. To address this, we 

implemented Retrieval-Augmented Generation (RAG), a system that allows you to load relevant 

research papers and ask any questions related to the topics covered in those documents. This 

enables efficient access to information without needing to manually review each paper. To build 

this system, we use the Sentence Transformer and LLaMA 3 model. 

Keywords: Retrieval-Augmented Generation (RAG), Question-Answering System, Information 

Retrieval, Language Generation, Similarity Search, Embeddings, Vector Database 

 

Introduction: 

RAG is basically a retrieval system 

through which we can retrieve content from 

a single or multi document. There are already 

many more techniques which are helpful. 

These include Traditional Information 

Retrieval (IR), Embedding- based, Retrieval 

(Dense Retrieval), Sequence-to-Sequence 

Models, Transformers (e.g., BERT, GPT, 

T5, BART), Question Answering (QA) 

Systems, Summarization Models, Topic 

Modeling, Text Classification, Named Entity 

Recognition (NER). but there are some 

drawbacks too. Many are Struggling with 

semantic understanding [1] , some require 

more computational power than traditional 

IR techniques [6]. Some require fine-tuning, 

and can sometimes generate irrelevant or 

incorrect information [7]. QA may fail to 

answer questions that require deeper 

reasoning [11]. Extractive methods may not 

provide accurate answer, and abstract methods 

can sometimes create incorrect or incomplete 

summaries [4]. Each technique has its own 

strengths, weaknesses, and best-use 

scenarios. Techniques like RAG, try to 

overcome the problem. Multi-Document 

Question Answering (MDQA) is an NLP 

task that involves answering questions based 

on a collection of multiple documents on the 

same topic, using a language model to 
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process and synthesize relevant information 

from the documents to generate accurate and 

coherent answers. 

We are surrounded by an ever-

expanding body of research data, which 

continuously adds to our collective 

knowledge. However, with the sheer volume 

of information available, it becomes 

increasingly challenging to read every single 

paper to find answers to specific questions. 

Manually sifting through hundreds or 

thousands of papers for relevant information 

is time-consuming and inefficient, especially 

when the information is dispersed across 

multiple sources. 

To address this challenge, we implemented 

RAG– an advanced system designed to 

streamline the process of accessing research 

insights. RAG combines information retrieval 

techniques with generative models, allowing 

you to load a set of relevant research papers 

into the system. Once these documents are 

loaded, users can ask any question related to 

the topics covered in the papers. The system 

uses the knowledge from the papers to 

retrieve relevant content and generate 

accurate, context-aware responses. 

This approach eliminates the need to 

read entire documents, as the system 

efficiently identifies and retrieves only the 

information that is most pertinent to the 

query. With RAG, users can gain quick and 

precise answers, making research more 

accessible and less time-consuming. It 

enables researchers, students, and 

professionals to interact with vast amounts 

of information in a more intuitive and 

efficient way, leveraging the full potential of 

modern language models and retrieval 

techniques. 

 

1. RAG System: 

The RAG system is an advanced 

framework that combines information 

retrieval and text generation to enhance the 

ability of language models to handle 

knowledge-intensive tasks. The process can 

be broken down into a pipeline that 

integrates document ingestion, embedding 

creation, embedding storage in a vector 

database, querying through information 

retrieval techniques, and answer generation 

using a language model. 

 

Document Ingestion: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: RAG System 
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The first step involves loading all 

relevant documents into the system. These 

documents can be in various formats such as 

text files, PDFs, or other types of 

documents. The content of these documents 

is extracted to make it available for further 

processing in the system. 

 

Cleaning and Preprocessing: 

After ingestion, the text is cleaned to 

remove unwanted elements, such as special 

characters, headers, footers etc. 

Preprocessing may also involve standardizing 

the text by performing operations like 

tokenization, which breaks the text into 

smaller components (e.g., words or sentences 

tokenization), and normalization, which 

ensures consistency across the data by, for 

example, converting text to lowercase. 

Text Chunking: 

In this step, the cleaned and 

preprocessed text is divided into smaller 

chunks or segments. These chunks can be 

created based on specific size limits or 

natural boundaries within the text (e.g., 

paragraphs or sentences). The key goal is to 

break the content into smaller, manageable 

pieces that maintain the context of the 

original text, ensuring that information stays 

relevant within each chunk. 

Embedding Generation: 

Each text chunk is then converted 

into a numerical vector representation, 

known as an embedding. This transformation 

captures the semantic meaning of the text, 

allowing it to be represented as a point in a 

high-dimensional space. The embedding 

process enables the system to handle text in 

a way that supports efficient similarity 

searches during query processing. 

Storing Embeddings: 

The generated embeddings are 

stored in a vector database along with 

metadata that provides additional context 

about the source of the content, such as the 

document from which the chunk was taken. 

This enables the system to quickly access 

and retrieve relevant embeddings during the 

search process, making the retrieval step 

faster and more efficient. 

Information Retrieval: 

When a user submits a query, the 

system generates an embedding for the 

query and compares it to the embeddings 

stored in the vector database. Using 

similarity measures, such as cosine 

similarity, the system identifies the most 

relevant text chunks that are similar to the 

query. The top relevant chunks are retrieved 

to ensure the response is based on the most 

pertinent information available. 

Answer Generation: 

After retrieving the relevant chunks, 

the system passes this information to a 

generative language model. The model 

synthesizes the content from the retrieved 

chunks and generates a coherent, 

contextually relevant answer to the user’s 

query. This response is crafted to be 

informative and aligned with the context of 

the retrieved data, ensuring that the answer 

is accurate and useful. 

 

2. Procedure: 

Step 1: Document Ingestion: 

In this step, we ingest multiple 

research paper PDFs by first loading each 

document from the specified directory. These 

documents are parsed and stored in a 

structured format as Document objects, each 

containing the raw page content and essential 

metadata (e.g., document source, title, 

publication year). The document ingestion 

process ensures that all relevant research 

papers are captured and prepared for further 

processing, allowing the system to handle 

diverse types of content efficiently. The 

documents are then made accessible for 

subsequent steps, such as cleaning, 

chunking, and embedding creation. Below 

are the five research papers used for this 

process. 
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Table 1: Research Papers on Deep Learning Models 

Sr. No. Research Paper Name 

1 A Comprehensive Overview and Comparative Analysis on Deep Learning Models [8] 

2 Attention Is All You Need [10] 

3 Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks [2] 

4 Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and 

Applications [5] 

5 Sequence to Sequence Learning with Neural Networks [9] 

 

Step 2: Text Cleaning and pre-processing: 

In this step, the raw content of the 

loaded research papers is cleaned to ensure 

high-quality text for further processing. The 

cleaning process involves removing 

unnecessary whitespace, special characters, 

non-alphanumeric symbols, and other 

irrelevant elements from the text. 

Additionally, redundant spaces and 

formatting issues are addressed to ensure the 

text is properly structured and consistent. 

This step improves the quality of the text, 

making it suitable for chunking, embedding 

creation, and other subsequent tasks. 

 

 

 

Step 3: Documents Chunking: 

After cleaning, the documents are 

split into smaller, manageable chunks of text 

to facilitate efficient processing. A method 

like Recursive Text Splitter is used to 

segment each document into chunks, 

ensuring each chunk maintains a clear 

context. To avoid losing meaning at chunk 

boundaries, an overlap of 50 tokens is added 

between adjacent chunks, preserving 

continuity across sections. Metadata, such as 

the document’s filename, title, or publication 

details, is attached to each chunk, allowing 

easy tracking of its source. This chunking 

process helps the system handle large texts 

effectively while retaining key contextual 

links. 

Figure 2: Chunk Document 

 

Step 4: Embedding Generation: 

Load a pre-trained language model 

(e.g., sentence-transformers/all-MiniLM-L6-

v2) using Hugging Face. This model 

converts each chunk into dense vector 

embeddings representing the chunk’s 

semantic meaning. Apply the embedding 

model to generate vector representations for 

each text chunk. These embeddings make it 

easier to perform similarity searches based 

on the semantic content of each chunk. 

 

 

 

Step 5: Store Embeddings in a Vector 

Database: 

Once document chunks have been 

created and transformed into embeddings, 

these embeddings are stored in a vector 

database, such as Chromadb. The vector 

store allows for efficient similarity searches 

and fast retrieval of relevant data by 

indexing the embeddings in a structured, 

searchable format. Each chunk’s embedding 

is stored along with a unique identifier 

(UUID) and relevant metadata, including the 

original document’s title or source of the 

document. 
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Figure 3: Store Embeddings in a Vector Database  

 

Step 6: Extract Unique Document Sources 

and Perform Similarity Search for 

Source: 

In this step, the system identifies unique 

document sources by extracting metadata 

from each processed chunk, such as 

filenames or document titles, to create a 

list of distinct sources. This helps in 

organizing the retrieval process by 

document origin. For each source, the 

system uses the user’s query to perform a 

similarity search within the vector database, 

retrieving the two most relevant chunks per 

document.. These two chunks from each 

source are then combined to create an 

information-dense block for that source. 

This step ensures that the system can access 

the most relevant sections from each 

document, providing a focused response to 

the user’s query. 

 

Figure 4: Retrieved Document 

 

Step 7: Generate Source-Specific Answers 

and Final Response: 

In this step, the system uses the 

LLaMA3 (inference taken using the Groq 

API) model to process the retrieved chunks 

for each source. Each set of combined 

chunks for a specific research paper is 

passed to the model, along with the user’s 

query, to generate an answer specific to that 

source. The LLaMA3 model provides an 

answer for each document, ensuring 

responses are tailored to the content of 

individual sources. 

Once the source-specific answers are 

generated, they are combined into a unified 

context. This combined context, containing 

the answers for each source, is then fed back 

to the LLaMA3 model. The model generates 

a final answer that synthesizes the 

information from all sources, offering a 

comprehensive and cohesive response to the 

user’s query. This approach enhances the 

accuracy and depth of the final answer by 

incorporating insights from each relevant 

document. 

Step 8: Save and Display the Final 

Answer: 

In this final step, the system saves 

the generated answer in a structured format 

to provide a clear, well-organized response 

to the user’s query. The comprehensive 

answer, which integrates insights from all 

processed sources, is stored in a text file, 

ensuring it is easily accessible for future 

reference or further analysis. 
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Result: 

Query: 

Figure 5: Question asked by User 

Answer: 

Figure 6: Answer Given by RAG System 

 

Conclusion: 

There are many ways to create a 

question-answering system, and each 

approach has its own drawbacks and 

benefits. Retrieval-Augmented Generation 

(RAG) is one such method through which 

we can generate precise answers in a 

question-answering system. It’s actually 

hybrid method means a combination of 

Extractive and Abstractive [3]. RAG is one 

of these methods, combining both extractive 

and abstractive techniques for improved 

performance. In RAG, information retrieval 

(via ChromaDB) fetches the relevant chunks, 

and a generative model (like LLaMA3) 

synthesizes these chunks to produce a 

coherent, natural answer. This hybrid 

approach ensures the final answer is 

contextually rich, more accurate, and aligned 

with the user’s query. 
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