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Abstract:

Artificial Intelligence (Al) workloads demand unprecedented computational power and
energy efficiency. Photonic hardware has emerged as a promising alternative to conventional
electronics due to its ultra-fast signal propagation, low latency, and reduced energy consumption. In
this work, we explore Silicon Oxynitride (SiON) as a photonic platform for Al hardware, highlighting
its low propagation loss, CMOS compatibility, and scalability. We discuss SiON waveguide-based
architectures for optical neural networks, emphasizing their potential to achieve favorable energy—
latency trade-offs. Our findings suggest that SiON integrated photonics offers a viable path towards
next-generation energy-efficient Al accelerators.
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Introduction:

The exponential growth of Al
applications has created an urgent need for
energy-efficient hardware  accelerators.
Conventional CMOS-based systems face
bottlenecks in terms of power consumption
and latency. Integrated photonics offers a
disruptive alternative by leveraging light for
computation and communication. Among
photonic platforms, Silicon Oxynitride (SiON)
has gained attention due to its low-loss
propagation, broad transparency window, and
CMOS-compatible fabrication.

Evolution of AI Hardware (CMOS — GPUs
— TPUs — Photonics):

1. CMOS-based CPUs: Early Al algorithms
(before ~2010) ran primarily on general-
purpose CPUs. CMOS scaling (Moore’s

Law) enabled increases in clock speed and
transistor density. But CPUs are serial
architectures, which is inefficient for Al
workloads that require massive parallelism.
This CMOS based CPU has limitation of
energy bottleneck and slow training for large-
scale neural networks.

2. GPUs (Graphics Processing Units):
Around 2010, researchers began using GPUs
for deep learning . GPUs are massively
parallel, handling thousands of threads
simultaneously. They are capable of training
of deep convolutional neural networks
(CNNs) in days instead of months. But the
main limitations are high power consumption
(hundreds of watts per chip), memory
bottlenecks, and scaling inefficiency for ever-
larger Al models.
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3. TPUs (Tensor Processing Units): Google
introduced TPUs in 2016 as ASICs optimized
for Al workloads. Specialized for matrix
multiplications (core operation in neural
networks). In this, we achieved higher
performance(watt) as compared to GPUs for
inference and training. But still were lagged in
bounding by resistive-capacitive (RC) delay,
heat dissipation, and energy costs of moving
data (memory wall).

4. Integrated Photonics for Al: To overcome
CMOS scaling limits, researchers started using
non-traditional hardware like
Neuromorphic chips (IBM TrueNorth, Intel
Loihi) which are brain-inspired spiking
networks. Also used the analog in-memory
computing that compute inside memory
arrays to reduce data transfer.

Apart from this if we use Photonic
hardware which uses light for computation,
promising ultra-low latency and energy
efficiency. We can use the concept of ONN
(Optical Neural Networks) for Al hardware,
that perform matrix multiplication via
interference in waveguide meshes (e.g.,
MZIs).'"  This causes speed of light
propagation with ultra fast inference, low
energy per operation ((< 1 fJ/MAC in theory)
and natural parallelism due to wavelength-
division multiplexing. But the advantages of
Photonics over electronics are Energy
Efficiency: Optical interconnects reduce the

Methodology:

Model for SiON MZ| mesh with

Photonic waveguid7 parallel channels

Why SiON ? : SiON is a balanced
material between SiO,, SizN,. It has
tunable refractive index (1.45-2.0) better for
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energy cost of data movement, a major
bottleneck in electronic accelerators. Low
Latency: Photons travel at the speed of light
with  minimal delay, enabling ultra-fast
inference. Scalability: Multiple wavelengths
can carry parallel information streams on the
same waveguide.

Among photonic materials, Silicon
Oxynitride (SiON) is promising because of
Low propagation loss, Wide transparency
window and CMOS-compatible fabrication.

During 2017-2019, integrated optical
matrix multiplication were done using silicon
and silicon nitride platforms. Later after 2020
Hybrid optical—electrical architectures for
deep learning inference had been in use.
Emergence of programmable photonic chips
with hundreds of tunable elements are pointing
towards scalable ONNs. But role of Silicon
Oxynitride (SION) in ONN are promisingly
increasing. In ONN (Optical-Nano-Nitride)
research, Silicon Oxynitride (SiON) (SiNxQy)
is a crucial material due to its tunable optical
and electrical properties, bridging the gap
between silicon oxide and silicon nitride. As
SiOn has a broad refractive index range for
waveguides and Bragg gratings in integrated
optics, a high-quality dielectric insulator for
high-power electronics and MEMS by
controlling its oxygen-to-nitrogen ratio, used
for optoelectronic devices and surface

passivation in electronics.

controllable confinement. Low propagation
loss (<0.1 dB/cm achievable). CMOS-
compatible fabrication wusing standard
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LPCVD/PECVD processes. [ Wide
transparency window (visible (blue) to near-IR
2 um). Thermally stable and less prone to
nonlinear absorption than silicon. Most
optical-Al chips use Si or SiN. SiON material
mostly establish a low-loss, CMOS-friendly
platform and characterize its nonlinearities
which makes a solid base for SiON-for-Al
contribution.

Why SiON photonic Waveguide? :
Mostly Waveguide Architectures should be
Single-mode  rib/strip type for good
confinement, low loss. SiON photonic
waveguide provides the same. Along with this,
if used as Multimode waveguides for mode-
division multiplexing. For  Arrayed
Waveguide Gratings (AWGSs), SiON is

SiON-based Architectures for Al Hardware:
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popular in telecom WDM components. MZI
meshes & reconfigurable circuits which are
suitable for optical neural network layers. Fig-
1 shows the basic structure of SiON based
photonic waveguide.

Why SiON Photonic waveguide for
Al? : Advantages for Al Photonics includes
low cumulative loss in deep meshes which is
the key for large matrix multiplication circuits
in ONNs. Tunable index contrast which
balances footprint (not as bulky as SiN, not as
nonlinear/unstable as Si). Hybrid integration
potential like detectors, modulators, and
lasers can Dbe bonded. Nonlinearities
(Brillouin/Kerr) that promises for optical
nonlinear activation functions.

SiO, Cladding

SiOxNy Core

Optic
SiO; Cladding al
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Figl: Structure of SIiON
photonic waveguide

SiON
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Phase
Shifter

SiON based Photonic Wavequide for Al Hardware

Fig2: Block diagram of SiON Photonic waveguide for Al

We reconfigure Mach—Zehnder
interferometer (MZI) meshes to implement
arbitrary unitary (or near-unitary) linear
transforms, enabling matrix—vector
multiplication (MVM) in a single optical pass.
On SiON, MZIs are realized with low-loss
waveguides and thermo/electro-optic phase
shifters. To structure this waveguide we have
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to solve the decomposition like any unitary U
€ C™N can be factorized into a sequence of
2x2 beam-splitter (MZI) elements and phase
shifts (e.g., Reck or Clements decomposition),
enabling linear layers of a neural network.
SiON reduced cumulative insertion loss in
deep meshes, enabling larger N before signal
sinks below detector noise.
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Simulation Model for energy-latency
analysis:

We proposed a model model of SiON
photonic Al hardware that uses MZI mesh
with parallel channels. Here we are
considering the SiON photonic waveguide +
MZI mesh as a matrix multiplication
engine.
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Each multiplication involves the parameters
like Optical loss per MZI (a _MZI),
Phase shifter energy E by relation Eyz =
CcV?

Waveguide Propagation delay by 7 =

Lxn_g [5)
—C .

Multiply-accumulate is given by Epac =
Piasertwg

Nparallel

Energy-Latency Trade-off in SION Photonic Al Hardware|
SION model
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Fig3: energy—latency curve

Discussion:

Fig3 curve represents the energy-
latency trade-off. Longer waveguides, more
latency in turn slower is the inference. But
slightly more optical loss ®. Phase-shifter
energy dominates, giving ~5 pJ/MAC
baseline.

Fig4
study of energy-latency trade-off with
SiON, CMOS CPU, GPU, TPU & Si. CMOS
CPU (~100 pJ, 50 ns), GPU (~20 pJ, 10 ns),
TPU (~10 pJ, 5 ns), Si Photonics (~1 pJ, 2 ns)
(IR 1t clearly shows how SiON can bridge

represents the comparative

the gap between current electronics (high
energy, lower latency) and future photonics
(ultra-low energy, low latency). Further the
SiON curve trends towards better efficiency
as parallelism increases.
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Fig 4: Comparative study

Challenges and Future Directions:

Still SiON is not as compact as Si, but
more stable than SiN. SiON based ecosystem
is still in developing mode as compared to
Si/SIN with limited industrial-scale support.
Active device integration like fast modulators,
detectors is limited in case of SiON as
compared to Si/SiN.

Conclusion:

We have outlined the potential of
Silicon Oxynitride integrated photonics as a
material platform for energy-efficient Al
hardware. By enabling low-loss, scalable, and

CMOS-compatible architectures, SiON
waveguides represent a promising step
towards  next-generation  optical neural

26



IJAAR Vol. 6 No. 38

networks. SiON shows promising role because
of its tailorability and moderate loss, making
it attractive for experimental Al photonic
accelerators.
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