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Abstract:  

Artificial Intelligence (AI) workloads demand unprecedented computational power and 

energy efficiency. Photonic hardware has emerged as a promising alternative to conventional 

electronics due to its ultra-fast signal propagation, low latency, and reduced energy consumption. In 

this work, we explore Silicon Oxynitride (SiON) as a photonic platform for AI hardware, highlighting 

its low propagation loss, CMOS compatibility, and scalability. We discuss SiON waveguide-based 

architectures for optical neural networks, emphasizing their potential to achieve favorable energy–

latency trade-offs. Our findings suggest that SiON integrated photonics offers a viable path towards 

next-generation energy-efficient AI accelerators. 

Keywords: Silicon Oxynitride, Integrated Photonics, Optical Neural Networks, Artificial 

Intelligence Hardware, Energy Efficiency. 

 

Introduction: 

The exponential growth of AI 

applications has created an urgent need for 

energy-efficient hardware accelerators. 

Conventional CMOS-based systems face 

bottlenecks in terms of power consumption 

and latency. Integrated photonics offers a 

disruptive alternative by leveraging light for 

computation and communication. Among 

photonic platforms, Silicon Oxynitride (SiON) 

has gained attention due to its low-loss 

propagation, broad transparency window, and 

CMOS-compatible fabrication. 

 

Evolution of AI Hardware (CMOS → GPUs 

→ TPUs → Photonics): 

1. CMOS-based CPUs:  Early AI algorithms 

(before ~2010) ran primarily on general-

purpose CPUs. CMOS scaling (Moore’s 

Law) enabled increases in clock speed and 

transistor density. But CPUs are serial 

architectures, which is inefficient for AI 

workloads that require massive parallelism. 

This CMOS based CPU has limitation of 

energy bottleneck and slow training for large-

scale neural networks. 

2. GPUs (Graphics Processing Units):  

Around 2010, researchers began using GPUs 

for deep learning 
[5]

. GPUs are massively 

parallel, handling thousands of threads 

simultaneously. They are capable of training 

of deep convolutional neural networks 

(CNNs) in days instead of months. But the 

main limitations are high power consumption 

(hundreds of watts per chip), memory 

bottlenecks, and scaling inefficiency for ever-

larger AI models. 
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3. TPUs (Tensor Processing Units):  Google 

introduced TPUs in 2016 as ASICs optimized 

for AI workloads. Specialized for matrix 

multiplications (core operation in neural 

networks). In this, we achieved higher 

performance(watt) as compared to GPUs for 

inference and training. But still were lagged in 

bounding by resistive-capacitive (RC) delay, 

heat dissipation, and energy costs of moving 

data (memory wall).  

4. Integrated Photonics for AI: To overcome 

CMOS scaling limits, researchers started using 

non-traditional hardware like 

Neuromorphic chips (IBM TrueNorth, Intel 

Loihi) which are brain-inspired spiking 

networks. Also used the analog in-memory 

computing that compute inside memory 

arrays to reduce data transfer.  

Apart from this if we use Photonic 

hardware which uses light for computation, 

promising ultra-low latency and energy 

efficiency. We can use the concept of ONN 

(Optical Neural Networks) for AI hardware, 

that perform matrix multiplication via 

interference in waveguide meshes (e.g., 

MZIs).
[7]

 This causes speed of light 

propagation with ultra fast inference, low 

energy per operation ((< 1 fJ/MAC in theory) 

and natural parallelism due to wavelength-

division multiplexing. But the advantages of 

Photonics over electronics are Energy 

Efficiency: Optical interconnects reduce the 

energy cost of data movement, a major 

bottleneck in electronic accelerators. Low 

Latency: Photons travel at the speed of light 

with minimal delay, enabling ultra-fast 

inference. Scalability: Multiple wavelengths 

can carry parallel information streams on the 

same waveguide.  

Among photonic materials, Silicon 

Oxynitride (SiON) is promising because of 

Low propagation loss, Wide transparency 

window and CMOS-compatible fabrication. 

During 2017–2019, integrated optical 

matrix multiplication were done using silicon 

and silicon nitride platforms. Later after 2020 

Hybrid optical–electrical architectures for 

deep learning inference had been in use. 

Emergence of programmable photonic chips 

with hundreds of tunable elements are pointing 

towards scalable ONNs. But role of Silicon 

Oxynitride (SiON) in ONN are promisingly 

increasing. In ONN (Optical-Nano-Nitride) 

research, Silicon Oxynitride (SiON) (SiNxOy) 

is a crucial material due to its tunable optical 

and electrical properties, bridging the gap 

between silicon oxide and silicon nitride. As 

SiOn has a broad refractive index range for 

waveguides and Bragg gratings in integrated 

optics, a high-quality dielectric insulator for 

high-power electronics and MEMS by 

controlling its oxygen-to-nitrogen ratio, used 

for optoelectronic devices and surface 

passivation in electronics.  

 

Methodology:  

 

 

 

 

 

 

Why SiON ? : SiON is a balanced 

material between  SiO2, Si3N4.  It has 

tunable refractive index (1.45–2.0) better for 

controllable confinement. Low propagation 

loss (<0.1 dB/cm achievable). CMOS-

compatible fabrication using standard 
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LPCVD/PECVD processes. 
[3]

  Wide 

transparency window (visible (blue) to near-IR 

2 µm). Thermally stable and less prone to 

nonlinear absorption than silicon. Most 

optical-AI chips use Si or SiN.  SiON material 

mostly establish a low-loss, CMOS-friendly 

platform and characterize its nonlinearities 

which makes a solid base for  SiON-for-AI 

contribution. 

Why SiON photonic Waveguide? : 

Mostly Waveguide Architectures should be 

Single-mode rib/strip type for good 

confinement, low loss. SiON photonic 

waveguide provides the same. Along with this, 

if used as Multimode waveguides for mode-

division multiplexing. For Arrayed 

Waveguide Gratings (AWGs), SiON is 

popular in telecom WDM components. MZI 

meshes & reconfigurable circuits which are 

suitable for optical neural network layers. Fig-

1 shows the basic structure of SiON based 

photonic waveguide. 

Why SiON Photonic waveguide for 

AI? : Advantages for AI Photonics includes 

low cumulative loss in deep meshes which is 

the key for large matrix multiplication circuits 

in ONNs. Tunable index contrast which 

balances footprint (not as bulky as SiN, not as 

nonlinear/unstable as Si). Hybrid integration 

potential like detectors, modulators, and 

lasers can be bonded. Nonlinearities 

(Brillouin/Kerr) that promises for optical 

nonlinear activation functions. 

 

SiON-based Architectures for AI Hardware: 

 

 

 

 

 

 

 

 

 

   

                                                      

  

We reconfigure Mach–Zehnder 

interferometer (MZI) meshes to implement 

arbitrary unitary (or near-unitary) linear 

transforms, enabling matrix–vector 

multiplication (MVM) in a single optical pass. 

On SiON, MZIs are realized with low-loss 

waveguides and thermo/electro-optic phase 

shifters. To structure this waveguide we have 

to solve the decomposition like any unitary U 

∈ C
N×N  

can be factorized into a sequence of 

2×2 beam-splitter (MZI) elements and phase 

shifts (e.g., Reck or Clements decomposition), 

enabling linear layers of a neural network. 

SiON reduced cumulative insertion loss in 

deep meshes, enabling larger N before signal 

sinks below detector noise. 
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Fig2: Block diagram of SiON Photonic waveguide for AI 

hardware 
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Simulation Model for energy-latency 

analysis: 

We proposed a model model of SiON 

photonic AI hardware that uses MZI mesh 

with parallel channels. Here we are 

considering  the SiON photonic waveguide + 

MZI mesh as a matrix multiplication 

engine.  

Each multiplication involves the parameters 

like Optical loss per MZI (α _MZI),  

Phase shifter energy E by relation EMZI = 

CV
2
 

Waveguide Propagation delay by      
     

 
. 

[5]
   

 Multiply-accumulate is given by       

 
         

         
 

  

Fig3: energy–latency curve Fig 4: Comparative study 

 

Discussion: 

Fig3 curve represents the energy–

latency trade-off. Longer waveguides, more 

latency in turn slower is the inference. But 

slightly more optical loss 
[8]

. Phase-shifter 

energy dominates, giving ~5 pJ/MAC 

baseline.  

Fig4 represents the comparative 

study of energy–latency trade-off with 

SiON, CMOS CPU, GPU, TPU & Si. CMOS 

CPU (~100 pJ, 50 ns), GPU (~20 pJ, 10 ns), 

TPU (~10 pJ, 5 ns), Si Photonics (~1 pJ, 2 ns) 
[4][1][6]

.  It clearly shows how SiON can bridge 

the gap between current electronics (high 

energy, lower latency) and future photonics 

(ultra-low energy, low latency). Further the 

SiON curve trends towards better efficiency 

as parallelism increases. 

 

 

 

Challenges and Future Directions: 

Still SiON is not as compact as Si, but 

more stable than SiN. SiON based ecosystem 

is still in developing mode as compared to 

Si/SiN with limited industrial-scale support. 

Active device integration like fast modulators, 

detectors is limited in case of SiON as 

compared to Si/SiN. 

 

Conclusion: 

We have outlined the potential of 

Silicon Oxynitride integrated photonics as a 

material platform for energy-efficient AI 

hardware. By enabling low-loss, scalable, and 

CMOS-compatible architectures, SiON 

waveguides represent a promising step 

towards next-generation optical neural 
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networks. SiON shows promising role because 

of its tailorability and moderate loss, making 

it attractive for experimental AI photonic 

accelerators. 
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