International Journal of Advance and Applied Research

www.ljaar.co.in

ISSN - 2347-7075 Impact Factor - 8.141
Peer Reviewed Bi-Monthly
Vol. 6 No. 38 September - October - 2025

Scalability and Rollback Efficiency of Kubernetes Deployment Patterns: A
Study of Blue-Green vs. Canary Approaches

Amit K. Mogal® & Vaibhav P. Sonaje’
'Department of Computer Science and Application,
MVP Samaj’s Commerce, Management and Computer Science (CMCS) College, Nashik,
Maharashtra, India.
Department of Computer Science and Application, School of Computer Science and
Engineering, Sandip University, Nashik, Maharashtra, India
Corresponding Author — Amit K. Mogal
DOI - 10.5281/zenodo.17309883

Abstract:

In cloud-native software development, continuous deployment strategies significantly influence
application availability, reliability, and maintainability. This study presents a comparative analysis of
two widely adopted Kubernetes deployment patterns—Blue-Green and Canary—focusing on their
scalability, rollback efficiency, and resource utilization in microservices-based web applications. Using
a controlled Kubernetes environment, traffic simulations were executed via K6 to replicate real-world
load scenarios, including linear ramp-ups, burst loads, and sustained user concurrency. Key
performance metrics such as pod startup time, request latency (P50, P90, P99), CPU/memory
utilization, and rollback duration were collected and analyzed using Prometheus and Grafana
dashboards. Results show that while Blue-Green deployments offer faster rollback and simpler version
control, Canary deployments provide finer traffic control and greater fault isolation during incremental
releases. The findings highlight critical trade-offs in deployment strategy selection and provide
operational insights for DevOps teams seeking to optimize reliability and service continuity in
Kubernetes clusters. The study contributes to deployment automation best practices and supports
informed decision-making for scalable, resilient microservice delivery pipelines.

Keywords: Kubernetes, Microservices, Blue-Green Deployment, Canary Deployment, Continuous
Delivery.

Introduction:

The evolution of software delivery has
been profoundly influenced by the rise of
microservices architecture and the advent of
container orchestration platforms like
Kubernetes. In today’s fast-paced development
landscape, continuous integration and
continuous deployment (CI/CD) practices are
essential to achieving rapid, reliable software
delivery. Within this context, deployment
strategies play a critical role in ensuring that
new software versions can be rolled out
efficiently, without disrupting user experience

or compromising system stability. Two of the
most widely used deployment patterns in
Kubernetes-based environments are Blue-
Green deployments and Canary deployments,
each offering unique advantages and trade-offs
in terms of scalability, fault tolerance, and
rollback capabilities.

Blue-Green deployment is a well-
established technique in which two identical
environments—referred to as "blue” and
"green"—are maintained. The live
environment serves the current production
traffic, while the new version is deployed to

43

http://www.ijaar.co.in/

IJAAR

the idle environment. After successful
validation, the router or load balancer switches
traffic to the new version, allowing instant
rollback by reverting traffic to the previous
environment in case of failure. This strategy
provides a high degree of control and
immediate rollback capability but comes at the
cost of duplicating infrastructure and potential
underutilization of resources. On the other
hand, Canary deployment involves releasing
the new version incrementally to a subset of
users or traffic while the majority continues to
interact with the stable release. This gradual
rollout enables real-time monitoring of
performance and error rates, allowing teams to
detect and respond to issues before the full
deployment. While this method enhances fault
isolation and reduces the risk of full-scale
failures, it introduces complexity in traffic
management and requires robust observability
to be effective. Kubernetes, as a container
orchestration platform, provides native support
and extensibility for implementing these
deployment strategies through services,
ingress controllers, and custom resource
definitions (CRDs). However, the practical
efficiency of Blue-Green and Canary
deployments in Kubernetes environments—
particularly in terms of scalability under high
user load and rollback performance during
failure scenarios—remains an area that
demands empirical validation. As
organizations adopt microservices at scale,
understanding the operational impact of these
deployment patterns is crucial for maintaining
service availability and performance.

This study seeks to address this gap by
conducting a comprehensive comparative
analysis of Blue-Green and Canary
deployment approaches in Kubernetes,
focusing specifically on their scalability and
rollback efficiency. A series of controlled
experiments were conducted using a

Amit K. Mogal & Vaibhav P. Sonaje

Vol. 6 No. 38

ISSN - 2347-7075

microservices-based web application deployed
in Kubernetes, subjected to simulated load
patterns generated using K6, a modern
performance testing tool. Metrics such as CPU
and memory utilization, pod startup time,
request latency across percentiles (P50, P90,
P99), rollback duration, and autoscaling
behavior were captured through Prometheus
and Grafana monitoring stacks. The primary
objective of this research is to evaluate which
deployment pattern offers superior
performance and resilience under various
stress conditions, and how these approaches
can be optimized to meet the demands of real-
time, large-scale web applications. The
findings of this study provide valuable insights
for DevOps engineers, cloud architects, and
software teams seeking to improve the
reliability, efficiency, and fault recovery of
their deployment pipelines in Kubernetes
environments. This study aims to compare the
performance of Blue-Green and Canary
deployment strategies in Kubernetes
environments under various traffic loads,
including linear, burst, and sustained traffic.
Additionally, it evaluates the rollback
efficiency of both strategies by simulating
controlled failure scenarios to assess their
reliability and responsiveness. Ultimately, the
research seeks to determine which deployment
strategy offers superior scalability, lower
latency, and more resource-efficient rollback
behavior, providing valuable insights for
optimizing Kubernetes cluster performance
and reliability. By systematically analyzing
deployment outcomes under consistent
workload scenarios, this research contributes
to the ongoing discourse on best practices in
cloud-native deployment automation, offering
a data-driven foundation for making strategic
decisions about deployment methodologies in
production Kubernetes environments

44

IJAAR

Related Work:

The advancement of microservices
architecture and the widespread adoption of
Kubernetes have brought a paradigm shift in
application deployment strategies. Among the
most prominent methods for achieving
continuous deployment and zero-downtime
delivery are Blue-Green and Canary
deployments. These techniques have been
extensively explored in both industry and
academia, particularly in relation to
performance, scalability, rollback efficiency,
and risk mitigation. James and Gideon (2024)
conducted a comprehensive evaluation of
Blue-Green and Canary deployments across
multiple axes, including scalability, fault
tolerance, and monitoring overhead. Their
study highlighted that Blue-Green
deployments offer a more straightforward
rollback mechanism by switching traffic
between production and staging environments
but come at the cost of duplicating resources.
In contrast, Canary deployments provide
granular traffic control and real-time error
detection, albeit requiring robust observability
to ensure safety and effectiveness during
progressive rollouts.

In enterprise-level Kubernetes
environments, Prabu (2024) emphasized the
architectural differences and implications of
using Blue-Green versus Canary deployments.
He found that Blue-Green approaches simplify
deployment for stateful applications due to
fixed routing but tend to introduce
inefficiencies when applied to dynamic
microservices, especially under high
concurrency. Conversely, Canary deployments
demonstrated superior adaptability in
autoscaling scenarios, thanks to Kubernetes-
native integrations like custom metrics APIs
and service mesh routing (e.g., Istio). Vangala
(2025) compared the two strategies
specifically within the context of DevOps

Amit K. Mogal & Vaibhav P. Sonaje

Vol. 6 No. 38

ISSN - 2347-7075

workflows. His study concluded that Canary
deployments outperform Blue-Green in terms
of system resilience and latency management
during high-load testing phases, especially
when rollback needs to be partial or selective.
Blue-Green’s instant rollback was found to be
more efficient only in controlled, low-traffic
scenarios where full-system switches are
viable.

Additional work by Idowu (2024)
evaluated rollback time, error rates, and
system recovery across Blue-Green and
Canary strategies using Kubernetes and Istio.
His findings aligned with prior research,
reinforcing that Canary deployment allows for
early anomaly detection and incremental
failure isolation, which is especially critical in
large-scale CI/CD pipelines where downtime
can have cascading effects. His study also
emphasized the importance of observability
frameworks like Prometheus and Grafana in
ensuring safe canary releases. Deployment
rollback mechanisms in complex pipelines
were further investigated by William and
Mercy (2025), who explored how rollback
logic is handled across different tools,
including Kubernetes, ArgoCD, and
Spinnaker. They noted that while both Blue-
Green and Canary deployments support
rollback procedures, the underlying trigger and
execution mechanisms differ significantly. In
Blue-Green, rollback is deterministic and
switch-based; in Canary, rollback is often
event-driven and influenced by real-time
performance telemetry.

In terms of scalability, Rakshit and
Banerjee (2024) performed benchmarking
experiments on Kubernetes clusters under
variable loads using both deployment models.
They concluded that Canary deployments
scale more predictably when combined with
Horizontal Pod Autoscalers (HPA) and custom
metrics, while Blue-Green deployments

45

IJAAR
exhibited delayed resource stabilization due to
abrupt traffic shifting. A significant
contribution from Reid and James (2025)
involved automating both Blue-Green and
Canary deployment pipelines using Terraform.
Their work demonstrated that infrastructure-
as-code tools could reduce human error and
promote repeatability in deployment strategies.
They found that Canary models benefited
more from dynamic templating and modular
infrastructure due to their progressive nature
and need for granular control.

In the realm of CI/CD optimization,
Amgothu (2024) focused on integrating canary
and blue-green strategies into Cl pipelines
using Jenkins and GitLab CI. His experiments
showed that Canary deployments resulted in
fewer production rollbacks when integrated
with performance alerting and anomaly
detection systems, thus reducing overall

Experimental Environment Setup:

Vol. 6 No. 38

ISSN - 2347-7075

MTTR (mean time to recovery). Finally, the
work by Sun-Rise (2025) in a production-
grade site reliability engineering (SRE)
context emphasized that the combination of
progressive deployment models with
automated rollback mechanisms provides the
most robust deployment reliability. His
analysis showed that Blue-Green is optimal for
controlled releases, while Canary excels in
high-velocity, frequent deployments.

Research Methodology:

This study adopts an experimental
research design to evaluate and compare the
scalability and rollback efficiency of two
Kubernetes deployment strategies: Blue-Green
and Canary. The objective is to simulate real-
world traffic loads, collect performance
metrics, and analyze how each deployment
strategy responds under varying conditions
within a controlled Kubernetes environment.

Table 1. Environmental Setup for Experiment.

Component Description

Platform Kubernetes v1.24 running on Minikube and AWS EKS (for
scalability validation)

Application Web-based microservice (Node.js backend + React frontend
+ MongoDB)

CI/CD Tool GitLab CI with integration to ArgoCD and Helm

Traffic K6 — for simulating realistic load patterns

Generator

Observability
Tools

Service Mesh

Prometheus, Grafana, and Loki (for logs, metrics, and alerts)

Istio (for traffic routing and Canary rollout control)

Deployment Patterns Under Study:
Blue-Green deployment
deploying a new version of an application in

involves
parallel with the existing version. Once the

new version is validated, traffic is shifted
entirely to the new version. One of the key

Amit K. Mogal & Vaibhav P. Sonaje

benefits of this approach is the ability to
perform instant rollbacks by simply switching
traffic back to the previous version if any
issues arise. In contrast, Canary deployment
follows a more gradual approach, where a new
version is rolled out to a small percentage of

46

IJAAR
traffic initially, such as 10% or 25%. The
deployment is closely monitored for key
metrics like error rates and latency before
incrementally increasing the exposure to more
users. If any predefined thresholds are
breached, the deployment can be rolled back
to ensure minimal impact on users. This

Vol. 6 No. 38

ISSN - 2347-7075

approach allows for more controlled and risk-
averse deployments.
Workload Simulation Strategy:

Traffic patterns were simulated using
K6 to mimic real-world conditions as shown in
Table 2 below

Table 2. Workload Simulation for Experiment.

Load Type

Details

Linear Ramp-Up Gradual increase from 10 — 200 users over 10 minutes

Burst Load

Sudden spike to 500 concurrent users

Sustained Load 150+ concurrent users over a 15-minute window

Metrics Collected:

The study evaluated several key
metrics across multiple categories, including:

1. Scalability: CPU utilization, memory
usage, pod startup time, and pod count
under Horizontal Pod Autoscaling
(HPA).

2. Performance: Request latency (P50,
P90, P99) and error rates.

3. Rollback Efficiency: Time to rollback
and number of failed requests during
rollback.

4. System Throughput: Requests per
second (RPS) and success rate.

5. Cost Efficiency: Resource utilization
versus workload served.

These metrics provide a
comprehensive understanding of the
performance, scalability, and efficiency of the
deployment strategies.

Failure Injection & Rollback Testing:

To evaluate rollback efficiency,
deliberate faults were introduced during
deployment, including:

1. CPU saturation using synthetic
compute-bound loads to simulate
resource exhaustion.

Amit K. Mogal & Vaibhav P. Sonaje

2. Forced application errors through bad
configuration or HTTP 500 errors to
mimic real-world failures.

3. Monitoring thresholds, such as error
rates exceeding 2% or latency above
500ms, were set to trigger rollbacks
automatically via ArgoCD and Istio
routing policies.

These fault injection scenarios allowed
for assessing the responsiveness and
effectiveness of the rollback mechanisms in
both Blue-Green and Canary deployment
strategies.

Data Collection Tools and Logging:
The study utilized several tools for
monitoring and metrics collection:

1. Prometheus: Collected CPU, memory,
and pod metrics.

2. Grafana: Provided dashboards to
visualize metric evolution over time.

3. Loki: Aggregated logs to detect errors
and rollback events.

4. K6 Output JSON: Used to extract
detailed latency distributions and
throughput metrics.

These tools enabled comprehensive
monitoring and analysis of the deployment
strategies' performance.

47

IJAAR

Experimental Procedure:
The experiment consisted of several key steps:
1. A baseline test was conducted by
deploying a stable version using both
Blue-Green and Canary strategies,
measuring the idle overhead for each.

2. Traffic simulation was then
performed, introducing loads
according to a predefined scenario
matrix.

3. A rollback scenario was triggered
mid-deployment, simulating a fault
and measuring the response time and
system impact.

4. To ensure consistency, each scenario
was executed three times, and the
average results were used for analysis.

5. Results were logged in JSON format
and Grafana snapshots, facilitating
detailed post-analysis and comparison
of the two deployment strategies.

Validity & Reliability Measures:

To ensure a fair and reliable
comparison, the experiment utilized identical
cluster configurations and system baselines for
both deployment strategies. The trials were
repeated to minimize the impact of random

Vol. 6 No. 38

ISSN - 2347-7075

fluctuations, and the results were validated
using live metrics and structured logging. This
approach enabled reproducibility and accuracy
in the findings, providing a solid foundation
for comparing the performance of Blue-Green
and Canary deployment strategies

Result, Analysis and Discussion:

This section presents the experimental

findings comparing Blue-Green and Canary
deployment strategies in Kubernetes
environments, focusing on key performance
metrics such as scalability, resource
utilization, rollback efficiency, and system
throughput under simulated workloads. The
results provide insights into the strengths and
limitations of each strategy, highlighting their
suitability for different use cases and
environments. By analyzing these metrics, this
study aims to inform best practices for
deploying applications in Kubernetes,
ultimately enhancing system reliability,
efficiency, and performance.
Scalability Metrics: Our results provide
insights into the strengths and weaknesses of
each strategy, informing decisions on optimal
deployment approaches in cloud-native
applications.

Table 3. CPU and Memory Utilization

Time (min) Cluster 1 (Blue-Green) Cluster 2 (Canary)
CPU Peak 62%
Memory Peak (MiB) 5571 MiB 4505 MiB

Canary deployments demonstrated
superior resource efficiency compared to Blue-
Green deployments, exhibiting lower CPU and
memory usage due to their progressive rollout
and gradual pod scaling. In contrast, Blue-
Green deployments resulted in abrupt resource
provisioning, leading to notable resource
spikes and inefficient pod utilization during
traffic switching. This comparison yields a key

Amit K. Mogal & Vaibhav P. Sonaje

insight: Canary deployment offers better
resource elasticity, effectively avoiding system
saturation during peak loads. By adopting a
more gradual approach to deployment, Canary
deployments minimize the strain on system
resources, ensuring more efficient and reliable
performance under varying loads.

48

IJAAR Vol. 6 No. 38 ISSN - 2347-7075
Table 4. Pod Startup Time and Autoscaling Responsiveness
Scenario Blue-Green Canary
Cold Start (avg) 10.2s 7.4s
Autoscaling Response 5 pods in 10 min 6 pods in 6 min
When paired with Horizontal Pod startup latency. This highlights a key

Autoscaling (HPA) and metric-based triggers,
Canary deployment enabled faster scaling
decisions, allowing for more agile responses to
changing traffic conditions. In contrast, Blue-
Green deployment required a full set of pods
to be ready before switching traffic, which
introduced delays in readiness and increased

advantage of Canary deployment: its ability to
provide finer control over rollout velocity and
scaling policies, making it more responsive to
dynamic traffic surges. By leveraging this
flexibility, Canary deployment can better
adapt to fluctuating demands, ensuring more
efficient and responsive system performance.

Table 5. Request Latency and Tail Performance

Request Rate (reg/sec) Latency (P50) Latency (P90) Latency (P99)
Blue-Green 190ms 310ms 470ms
Canary 140ms 210ms 260ms

Canary deployments consistently incremental rollout approach, which helps
maintained lower latency across all isolate faults and stabilize latency. By
percentiles, particularly under burst and gradually introducing changes, Canary
sustained loads, demonstrating its ability to deployments minimize the risk of
handle traffic demands efficiently. In contrast, overwhelming the cluster, ensuring more
Blue-Green deployments experienced consistent and reliable performance. In

significantly higher latency, with P99 latency
nearly 80% higher, highlighting poor tail-end
performance during load shifts. This disparity

contrast, Blue-Green's all-or-nothing approach
can lead to performance degradation during
traffic switches.

underscores the benefits of Canary's
Table 6. Rollback Efficiency
Metric Blue-Green Canary
Rollback Time 6.5 seconds 9.2 seconds
Failed Requests During Rollback 18% spike <5% spike
Blue-Green deployments enabled traffic routes, offering a speedy recovery

near-instant rollbacks by simply switching

Amit K. Mogal & Vaibhav P. Sonaje

option. However, Canary deployments,

49

IJAAR

although slightly slower in rollback,
demonstrated a significant advantage in
minimizing failed requests. This was achieved
through real-time metric-triggered rollbacks
applied to a partial subset of traffic, ensuring a
more controlled and safer reversal process.
The insight here is that while Blue-Green

Vol. 6 No. 38

ISSN - 2347-7075

rollbacks are faster, they can be riskier without
proper monitoring. In contrast, Canary
rollbacks, though slightly slower, are
inherently safer and more fault-tolerant,
making them particularly suitable for real-time
systems where reliability and precision are
crucial.

Table 7. Throughput and Load Handling

Scenario

Blue-Green (reg/sec)

Canary (reg/sec)

Sustained Load

Burst Load Handling Delayed

Canary deployment demonstrated
superior sustained throughput, particularly
when integrated with KEDA (event-based
autoscaler) and Istio for routing. This
combination allowed for efficient handling of
traffic demands. In contrast, Blue-Green
deployment struggled to stabilize after abrupt
traffic shifts, resulting in brief periods of
throughput degradation. The key insight is that
Canary deployment supports high-velocity
continuous delivery and handles event-driven
loads more gracefully. By gradually
introducing changes and scaling resources
accordingly, Canary ensures a more stable and
efficient system performance, making it well-
suited for environments with dynamic traffic
patterns.

The results conclusively show that
Canary deployments, despite their more
complex setup, outperform Blue-Green
deployments in Kubernetes environments in
terms of scalability, resilience, and rollback
control. While Blue-Green deployments are
well-suited for specific use cases such as low-
frequency full system updates or scenarios
requiring instant full rollback, Canary
deployments are more adaptable to modern,
dynamic environments. Canary's strengths
make it particularly suitable for real-time

Amit K. Mogal & Vaibhav P. Sonaje

140 reg/sec

190 reg/sec

Stable at 170+

microservices, frequent code delivery, and
data-driven Site Reliability Engineering (SRE)
environments, where observability and
progressive rollout are essential. By leveraging
Canary's capabilities, teams can achieve more
reliable and efficient deployments, better
aligning with the demands of contemporary
software development and operations.

Limitations and Future Research:

This study, despite its comprehensive
nature, is subject to several limitations that
warrant acknowledgment. Firstly, the
experiments were conducted in a controlled
Kubernetes cluster with simulated traffic,
which may not fully replicate the complexities
of real-world production environments where
factors like network latency and inter-service
dependencies play a role. Additionally, the
study's focus on stateless microservices limits
its generalizability to stateful services or
applications with different transactional
dynamics. The reliance on specific tools like
Istio and Prometheus may also introduce bias,
as alternative configurations could yield
different outcomes. Furthermore, the short-
term observation window may overlook long-
term performance implications such as
memory leaks or autoscaler recalibration.

50

IJAAR

Finally, the single-cluster setup does not
account for the complexities of multi-region or
hybrid cloud deployments, where network
latency and routing could impact deployment
strategy effectiveness. These limitations
highlight areas for future research to further
validate and extend the findings.

Future research directions building
upon this study's findings could explore
several key areas. Firstly, evaluating Blue-
Green and Canary deployments in multi-
cluster and edge environments would provide
insights into their performance under
geographically distributed scenarios.
Secondly, integrating Al/ML-driven
autoscalers could optimize rollout and rollback
processes. Thirdly, investigating the impact of
these deployment patterns on stateful and
streaming applications would be valuable.
Additionally, examining security and
compliance considerations, developing cost
optimization models, and exploring human-in-
the-loop rollback strategies could further
enhance the understanding and application of
these deployment strategies in real-world
contexts

Conclusion:

The evolution of microservices and
cloud-native architectures has made
deployment strategies a critical component of
system reliability, performance, and agility.
This research undertook a comprehensive
comparative study of two widely adopted
Kubernetes deployment models—Blue-Green
and Canary—with a specific focus on their
scalability, rollback efficiency, and operational
resilience. Through a series of controlled
experiments involving simulated workloads,
traffic spikes, and induced failure scenarios,
the study revealed that Canary deployments
offer superior scalability and fault isolation,
particularly in dynamic and high-concurrency

Amit K. Mogal & Vaibhav P. Sonaje

Vol. 6 No. 38

ISSN - 2347-7075

environments. Canary's gradual rollout
mechanism, when paired with real-time
telemetry and autoscaling logic, allowed for
more adaptive system behavior and lower tail-
end latency. Although rollbacks in Canary
deployments were slightly slower than in
Blue-Green, they were more targeted and
resulted in fewer service disruptions. In
contrast, Blue-Green deployments excelled in
environments where simplicity, predictability,
and full rollback speed were more critical than
resource efficiency. Their ease of setup and
binary traffic switching model made them
well-suited for monolithic or low-frequency
release pipelines. However, they incurred
higher infrastructure overhead due to
environment duplication and showed
limitations under burst and sustained traffic
loads. Ultimately, the study demonstrates that
neither strategy is universally superior, but
rather, the optimal choice depends on the
deployment context, risk tolerance, and
observability maturity of the organization. For
teams prioritizing fine-grained control,
progressive delivery, and minimal blast radius,
Canary deployment is the preferred model. For
organizations requiring rapid full-system
switches with limited infrastructure
complexity, Blue-Green remains a viable
option. This work contributes to the ongoing
discourse on DevOps and cloud-native
deployment best practices by providing data-
driven insights, real-world metrics, and
empirical comparisons between deployment
strategies. It also lays a foundation for future
exploration into multi-cluster, Al-enhanced
autoscaling, and hybrid deployment models
that can further optimize the balance between
speed, safety, and efficiency in modern
application delivery pipelines.

51

IJAAR

References:

1.

. Prabu, V. P.

James, A., & Gideon, A. (2024). Blue-
Green and Canary Deployments in
Microservices Ecosystems. ResearchGate.
https://www.researchgate.net/publication/3
91018435

(2024). Optimizing
with Kubernetes for
Enterprise Applications. ResearchGate.
https://www.researchgate.net/publication/3
90695881

Microservices

Vangala, V. (2025). Blue-Green and
Canary Deployments in DevOps: A
Comparative Study. ResearchGate.

https://www.researchgate.net/publication/3
88490305

Idowu, M. (2024). A Deep Dive into Blue-
Green and Canary Deployments: Benefits,
Challenges, and Best Practices.
ResearchGate.

https://www.researchgate.net/publication/3
90108683

William, E., & Mercy, D. (2025).
Deployment Rollbacks and Fail-Safes in
Cloud Pipelines. ResearchGate.

https://www.researchgate.net/publication/3
91024117

Amit K. Mogal & Vaibhav P. Sonaje

Vol. 6 No. 38
6.

10.

ISSN - 2347-7075

Rakshit, H., & Banerjee, S. (2024).
Scalability Evaluation on Zero Downtime
Deployment in Kubernetes Cluster. IEEE
Xplore.
https://ieeexplore.ieee.org/document/1091
4046

. Reid, A., & James, A. (2025). Automating

Blue-Green and Canary Deployments in
Kubernetes Using Terraform Modules.
ResearchGate.
https://www.researchgate.net/publication/3
91449899

Amgothu, S. (2024). Innovative CI/CD
Pipeline Optimization through Canary and
Blue-Green Deployment. International
Journal of Computer Applications.
https://www.researchgate.net/publication/3
86143021

Sun-Rise, G. (2025). Zero Downtime
Deployments: SRE Strategies for
Continuous Delivery. IJIMSM.

https://www.ijmsm.org/volumel-
issue2/IIMSM-V112P102.pdf
Grafana. (n.d.). k6 Documentation.
Retrieved June 14, 2025,
https://grafana.com/docs/k6/latest/

from

52

https://www.researchgate.net/publication/391018435
https://www.researchgate.net/publication/391018435
https://www.researchgate.net/publication/390695881
https://www.researchgate.net/publication/390695881
https://www.researchgate.net/publication/388490305
https://www.researchgate.net/publication/388490305
https://www.researchgate.net/publication/390108683
https://www.researchgate.net/publication/390108683
https://www.researchgate.net/publication/391024117
https://www.researchgate.net/publication/391024117
https://ieeexplore.ieee.org/document/10914046
https://ieeexplore.ieee.org/document/10914046
https://www.researchgate.net/publication/391449899
https://www.researchgate.net/publication/391449899
https://www.researchgate.net/publication/386143021
https://www.researchgate.net/publication/386143021
https://www.ijmsm.org/volume1-issue2/IJMSM-V1I2P102.pdf
https://www.ijmsm.org/volume1-issue2/IJMSM-V1I2P102.pdf
https://grafana.com/docs/k6/latest/

