
43

International Journal of Advance and Applied Research
www.ijaar.co.in

ISSN – 2347-7075 Impact Factor – 8.141
Peer Reviewed Bi-Monthly

 Vol. 6 No. 38 September - October - 2025

Scalability and Rollback Efficiency of Kubernetes Deployment Patterns: A

Study of Blue-Green vs. Canary Approaches

Amit K. Mogal
1

& Vaibhav P. Sonaje
2

1Department of Computer Science and Application,

MVP Samaj’s Commerce, Management and Computer Science (CMCS) College, Nashik,

Maharashtra, India.
2Department of Computer Science and Application, School of Computer Science and

Engineering, Sandip University, Nashik, Maharashtra, India

Corresponding Author – Amit K. Mogal

DOI - 10.5281/zenodo.17309883

Abstract:

In cloud-native software development, continuous deployment strategies significantly influence

application availability, reliability, and maintainability. This study presents a comparative analysis of

two widely adopted Kubernetes deployment patterns—Blue-Green and Canary—focusing on their

scalability, rollback efficiency, and resource utilization in microservices-based web applications. Using

a controlled Kubernetes environment, traffic simulations were executed via K6 to replicate real-world

load scenarios, including linear ramp-ups, burst loads, and sustained user concurrency. Key

performance metrics such as pod startup time, request latency (P50, P90, P99), CPU/memory

utilization, and rollback duration were collected and analyzed using Prometheus and Grafana

dashboards. Results show that while Blue-Green deployments offer faster rollback and simpler version

control, Canary deployments provide finer traffic control and greater fault isolation during incremental

releases. The findings highlight critical trade-offs in deployment strategy selection and provide

operational insights for DevOps teams seeking to optimize reliability and service continuity in

Kubernetes clusters. The study contributes to deployment automation best practices and supports

informed decision-making for scalable, resilient microservice delivery pipelines.

Keywords: Kubernetes, Microservices, Blue-Green Deployment, Canary Deployment, Continuous

Delivery.

Introduction:

The evolution of software delivery has

been profoundly influenced by the rise of

microservices architecture and the advent of

container orchestration platforms like

Kubernetes. In today’s fast-paced development

landscape, continuous integration and

continuous deployment (CI/CD) practices are

essential to achieving rapid, reliable software

delivery. Within this context, deployment

strategies play a critical role in ensuring that

new software versions can be rolled out

efficiently, without disrupting user experience

or compromising system stability. Two of the

most widely used deployment patterns in

Kubernetes-based environments are Blue-

Green deployments and Canary deployments,

each offering unique advantages and trade-offs

in terms of scalability, fault tolerance, and

rollback capabilities.

Blue-Green deployment is a well-

established technique in which two identical

environments—referred to as "blue" and

"green"—are maintained. The live

environment serves the current production

traffic, while the new version is deployed to

http://www.ijaar.co.in/

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

44

the idle environment. After successful

validation, the router or load balancer switches

traffic to the new version, allowing instant

rollback by reverting traffic to the previous

environment in case of failure. This strategy

provides a high degree of control and

immediate rollback capability but comes at the

cost of duplicating infrastructure and potential

underutilization of resources. On the other

hand, Canary deployment involves releasing

the new version incrementally to a subset of

users or traffic while the majority continues to

interact with the stable release. This gradual

rollout enables real-time monitoring of

performance and error rates, allowing teams to

detect and respond to issues before the full

deployment. While this method enhances fault

isolation and reduces the risk of full-scale

failures, it introduces complexity in traffic

management and requires robust observability

to be effective. Kubernetes, as a container

orchestration platform, provides native support

and extensibility for implementing these

deployment strategies through services,

ingress controllers, and custom resource

definitions (CRDs). However, the practical

efficiency of Blue-Green and Canary

deployments in Kubernetes environments—

particularly in terms of scalability under high

user load and rollback performance during

failure scenarios—remains an area that

demands empirical validation. As

organizations adopt microservices at scale,

understanding the operational impact of these

deployment patterns is crucial for maintaining

service availability and performance.

This study seeks to address this gap by

conducting a comprehensive comparative

analysis of Blue-Green and Canary

deployment approaches in Kubernetes,

focusing specifically on their scalability and

rollback efficiency. A series of controlled

experiments were conducted using a

microservices-based web application deployed

in Kubernetes, subjected to simulated load

patterns generated using K6, a modern

performance testing tool. Metrics such as CPU

and memory utilization, pod startup time,

request latency across percentiles (P50, P90,

P99), rollback duration, and autoscaling

behavior were captured through Prometheus

and Grafana monitoring stacks. The primary

objective of this research is to evaluate which

deployment pattern offers superior

performance and resilience under various

stress conditions, and how these approaches

can be optimized to meet the demands of real-

time, large-scale web applications. The

findings of this study provide valuable insights

for DevOps engineers, cloud architects, and

software teams seeking to improve the

reliability, efficiency, and fault recovery of

their deployment pipelines in Kubernetes

environments. This study aims to compare the

performance of Blue-Green and Canary

deployment strategies in Kubernetes

environments under various traffic loads,

including linear, burst, and sustained traffic.

Additionally, it evaluates the rollback

efficiency of both strategies by simulating

controlled failure scenarios to assess their

reliability and responsiveness. Ultimately, the

research seeks to determine which deployment

strategy offers superior scalability, lower

latency, and more resource-efficient rollback

behavior, providing valuable insights for

optimizing Kubernetes cluster performance

and reliability. By systematically analyzing

deployment outcomes under consistent

workload scenarios, this research contributes

to the ongoing discourse on best practices in

cloud-native deployment automation, offering

a data-driven foundation for making strategic

decisions about deployment methodologies in

production Kubernetes environments

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

45

Related Work:

The advancement of microservices

architecture and the widespread adoption of

Kubernetes have brought a paradigm shift in

application deployment strategies. Among the

most prominent methods for achieving

continuous deployment and zero-downtime

delivery are Blue-Green and Canary

deployments. These techniques have been

extensively explored in both industry and

academia, particularly in relation to

performance, scalability, rollback efficiency,

and risk mitigation. James and Gideon (2024)

conducted a comprehensive evaluation of

Blue-Green and Canary deployments across

multiple axes, including scalability, fault

tolerance, and monitoring overhead. Their

study highlighted that Blue-Green

deployments offer a more straightforward

rollback mechanism by switching traffic

between production and staging environments

but come at the cost of duplicating resources.

In contrast, Canary deployments provide

granular traffic control and real-time error

detection, albeit requiring robust observability

to ensure safety and effectiveness during

progressive rollouts.

In enterprise-level Kubernetes

environments, Prabu (2024) emphasized the

architectural differences and implications of

using Blue-Green versus Canary deployments.

He found that Blue-Green approaches simplify

deployment for stateful applications due to

fixed routing but tend to introduce

inefficiencies when applied to dynamic

microservices, especially under high

concurrency. Conversely, Canary deployments

demonstrated superior adaptability in

autoscaling scenarios, thanks to Kubernetes-

native integrations like custom metrics APIs

and service mesh routing (e.g., Istio). Vangala

(2025) compared the two strategies

specifically within the context of DevOps

workflows. His study concluded that Canary

deployments outperform Blue-Green in terms

of system resilience and latency management

during high-load testing phases, especially

when rollback needs to be partial or selective.

Blue-Green’s instant rollback was found to be

more efficient only in controlled, low-traffic

scenarios where full-system switches are

viable.

Additional work by Idowu (2024)

evaluated rollback time, error rates, and

system recovery across Blue-Green and

Canary strategies using Kubernetes and Istio.

His findings aligned with prior research,

reinforcing that Canary deployment allows for

early anomaly detection and incremental

failure isolation, which is especially critical in

large-scale CI/CD pipelines where downtime

can have cascading effects. His study also

emphasized the importance of observability

frameworks like Prometheus and Grafana in

ensuring safe canary releases. Deployment

rollback mechanisms in complex pipelines

were further investigated by William and

Mercy (2025), who explored how rollback

logic is handled across different tools,

including Kubernetes, ArgoCD, and

Spinnaker. They noted that while both Blue-

Green and Canary deployments support

rollback procedures, the underlying trigger and

execution mechanisms differ significantly. In

Blue-Green, rollback is deterministic and

switch-based; in Canary, rollback is often

event-driven and influenced by real-time

performance telemetry.

In terms of scalability, Rakshit and

Banerjee (2024) performed benchmarking

experiments on Kubernetes clusters under

variable loads using both deployment models.

They concluded that Canary deployments

scale more predictably when combined with

Horizontal Pod Autoscalers (HPA) and custom

metrics, while Blue-Green deployments

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

46

exhibited delayed resource stabilization due to

abrupt traffic shifting. A significant

contribution from Reid and James (2025)

involved automating both Blue-Green and

Canary deployment pipelines using Terraform.

Their work demonstrated that infrastructure-

as-code tools could reduce human error and

promote repeatability in deployment strategies.

They found that Canary models benefited

more from dynamic templating and modular

infrastructure due to their progressive nature

and need for granular control.

In the realm of CI/CD optimization,

Amgothu (2024) focused on integrating canary

and blue-green strategies into CI pipelines

using Jenkins and GitLab CI. His experiments

showed that Canary deployments resulted in

fewer production rollbacks when integrated

with performance alerting and anomaly

detection systems, thus reducing overall

MTTR (mean time to recovery). Finally, the

work by Sun-Rise (2025) in a production-

grade site reliability engineering (SRE)

context emphasized that the combination of

progressive deployment models with

automated rollback mechanisms provides the

most robust deployment reliability. His

analysis showed that Blue-Green is optimal for

controlled releases, while Canary excels in

high-velocity, frequent deployments.

Research Methodology:

This study adopts an experimental

research design to evaluate and compare the

scalability and rollback efficiency of two

Kubernetes deployment strategies: Blue-Green

and Canary. The objective is to simulate real-

world traffic loads, collect performance

metrics, and analyze how each deployment

strategy responds under varying conditions

within a controlled Kubernetes environment.

Experimental Environment Setup:

Table 1. Environmental Setup for Experiment.

Component Description

Platform Kubernetes v1.24 running on Minikube and AWS EKS (for

scalability validation)

Application Web-based microservice (Node.js backend + React frontend

+ MongoDB)

CI/CD Tool GitLab CI with integration to ArgoCD and Helm

Traffic

Generator

K6 – for simulating realistic load patterns

Observability

Tools

Prometheus, Grafana, and Loki (for logs, metrics, and alerts)

Service Mesh Istio (for traffic routing and Canary rollout control)

Deployment Patterns Under Study:

Blue-Green deployment involves

deploying a new version of an application in

parallel with the existing version. Once the

new version is validated, traffic is shifted

entirely to the new version. One of the key

benefits of this approach is the ability to

perform instant rollbacks by simply switching

traffic back to the previous version if any

issues arise. In contrast, Canary deployment

follows a more gradual approach, where a new

version is rolled out to a small percentage of

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

47

traffic initially, such as 10% or 25%. The

deployment is closely monitored for key

metrics like error rates and latency before

incrementally increasing the exposure to more

users. If any predefined thresholds are

breached, the deployment can be rolled back

to ensure minimal impact on users. This

approach allows for more controlled and risk-

averse deployments.

Workload Simulation Strategy:

Traffic patterns were simulated using

K6 to mimic real-world conditions as shown in

Table 2 below

Table 2. Workload Simulation for Experiment.

Load Type Details

Linear Ramp-Up Gradual increase from 10 → 200 users over 10 minutes

Burst Load Sudden spike to 500 concurrent users

Sustained Load 150+ concurrent users over a 15-minute window

Metrics Collected:

The study evaluated several key

metrics across multiple categories, including:

1. Scalability: CPU utilization, memory

usage, pod startup time, and pod count

under Horizontal Pod Autoscaling

(HPA).

2. Performance: Request latency (P50,

P90, P99) and error rates.

3. Rollback Efficiency: Time to rollback

and number of failed requests during

rollback.

4. System Throughput: Requests per

second (RPS) and success rate.

5. Cost Efficiency: Resource utilization

versus workload served.

These metrics provide a

comprehensive understanding of the

performance, scalability, and efficiency of the

deployment strategies.

Failure Injection & Rollback Testing:

To evaluate rollback efficiency,

deliberate faults were introduced during

deployment, including:

1. CPU saturation using synthetic

compute-bound loads to simulate

resource exhaustion.

2. Forced application errors through bad

configuration or HTTP 500 errors to

mimic real-world failures.

3. Monitoring thresholds, such as error

rates exceeding 2% or latency above

500ms, were set to trigger rollbacks

automatically via ArgoCD and Istio

routing policies.

These fault injection scenarios allowed

for assessing the responsiveness and

effectiveness of the rollback mechanisms in

both Blue-Green and Canary deployment

strategies.

Data Collection Tools and Logging:

The study utilized several tools for

monitoring and metrics collection:

1. Prometheus: Collected CPU, memory,

and pod metrics.

2. Grafana: Provided dashboards to

visualize metric evolution over time.

3. Loki: Aggregated logs to detect errors

and rollback events.

4. K6 Output JSON: Used to extract

detailed latency distributions and

throughput metrics.

These tools enabled comprehensive

monitoring and analysis of the deployment

strategies' performance.

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

48

Experimental Procedure:

The experiment consisted of several key steps:

1. A baseline test was conducted by

deploying a stable version using both

Blue-Green and Canary strategies,

measuring the idle overhead for each.

2. Traffic simulation was then

performed, introducing loads

according to a predefined scenario

matrix.

3. A rollback scenario was triggered

mid-deployment, simulating a fault

and measuring the response time and

system impact.

4. To ensure consistency, each scenario

was executed three times, and the

average results were used for analysis.

5. Results were logged in JSON format

and Grafana snapshots, facilitating

detailed post-analysis and comparison

of the two deployment strategies.

Validity & Reliability Measures:

To ensure a fair and reliable

comparison, the experiment utilized identical

cluster configurations and system baselines for

both deployment strategies. The trials were

repeated to minimize the impact of random

fluctuations, and the results were validated

using live metrics and structured logging. This

approach enabled reproducibility and accuracy

in the findings, providing a solid foundation

for comparing the performance of Blue-Green

and Canary deployment strategies

Result, Analysis and Discussion:

This section presents the experimental

findings comparing Blue-Green and Canary

deployment strategies in Kubernetes

environments, focusing on key performance

metrics such as scalability, resource

utilization, rollback efficiency, and system

throughput under simulated workloads. The

results provide insights into the strengths and

limitations of each strategy, highlighting their

suitability for different use cases and

environments. By analyzing these metrics, this

study aims to inform best practices for

deploying applications in Kubernetes,

ultimately enhancing system reliability,

efficiency, and performance.

Scalability Metrics: Our results provide

insights into the strengths and weaknesses of

each strategy, informing decisions on optimal

deployment approaches in cloud-native

applications.

Table 3. CPU and Memory Utilization

Time (min) Cluster 1 (Blue-Green) Cluster 2 (Canary)

CPU Peak 74% 62%

Memory Peak (MiB) 5571 MiB 4505 MiB

Canary deployments demonstrated

superior resource efficiency compared to Blue-

Green deployments, exhibiting lower CPU and

memory usage due to their progressive rollout

and gradual pod scaling. In contrast, Blue-

Green deployments resulted in abrupt resource

provisioning, leading to notable resource

spikes and inefficient pod utilization during

traffic switching. This comparison yields a key

insight: Canary deployment offers better

resource elasticity, effectively avoiding system

saturation during peak loads. By adopting a

more gradual approach to deployment, Canary

deployments minimize the strain on system

resources, ensuring more efficient and reliable

performance under varying loads.

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

49

Table 4. Pod Startup Time and Autoscaling Responsiveness

Scenario Blue-Green Canary

Cold Start (avg) 10.2s 7.4s

Autoscaling Response 5 pods in 10 min 6 pods in 6 min

When paired with Horizontal Pod

Autoscaling (HPA) and metric-based triggers,

Canary deployment enabled faster scaling

decisions, allowing for more agile responses to

changing traffic conditions. In contrast, Blue-

Green deployment required a full set of pods

to be ready before switching traffic, which

introduced delays in readiness and increased

startup latency. This highlights a key

advantage of Canary deployment: its ability to

provide finer control over rollout velocity and

scaling policies, making it more responsive to

dynamic traffic surges. By leveraging this

flexibility, Canary deployment can better

adapt to fluctuating demands, ensuring more

efficient and responsive system performance.

Table 5. Request Latency and Tail Performance

Request Rate (req/sec) Latency (P50) Latency (P90) Latency (P99)

Blue-Green 190ms 310ms 470ms

Canary 140ms 210ms 260ms

Canary deployments consistently

maintained lower latency across all

percentiles, particularly under burst and

sustained loads, demonstrating its ability to

handle traffic demands efficiently. In contrast,

Blue-Green deployments experienced

significantly higher latency, with P99 latency

nearly 80% higher, highlighting poor tail-end

performance during load shifts. This disparity

underscores the benefits of Canary's

incremental rollout approach, which helps

isolate faults and stabilize latency. By

gradually introducing changes, Canary

deployments minimize the risk of

overwhelming the cluster, ensuring more

consistent and reliable performance. In

contrast, Blue-Green's all-or-nothing approach

can lead to performance degradation during

traffic switches.

Table 6. Rollback Efficiency

Metric Blue-Green Canary

Rollback Time 6.5 seconds 9.2 seconds

Failed Requests During Rollback 18% spike <5% spike

Blue-Green deployments enabled

near-instant rollbacks by simply switching

traffic routes, offering a speedy recovery

option. However, Canary deployments,

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

50

although slightly slower in rollback,

demonstrated a significant advantage in

minimizing failed requests. This was achieved

through real-time metric-triggered rollbacks

applied to a partial subset of traffic, ensuring a

more controlled and safer reversal process.

The insight here is that while Blue-Green

rollbacks are faster, they can be riskier without

proper monitoring. In contrast, Canary

rollbacks, though slightly slower, are

inherently safer and more fault-tolerant,

making them particularly suitable for real-time

systems where reliability and precision are

crucial.

Table 7. Throughput and Load Handling

Scenario Blue-Green (req/sec) Canary (req/sec)

Sustained Load 140 req/sec 190 req/sec

Burst Load Handling Delayed Stable at 170+

Canary deployment demonstrated

superior sustained throughput, particularly

when integrated with KEDA (event-based

autoscaler) and Istio for routing. This

combination allowed for efficient handling of

traffic demands. In contrast, Blue-Green

deployment struggled to stabilize after abrupt

traffic shifts, resulting in brief periods of

throughput degradation. The key insight is that

Canary deployment supports high-velocity

continuous delivery and handles event-driven

loads more gracefully. By gradually

introducing changes and scaling resources

accordingly, Canary ensures a more stable and

efficient system performance, making it well-

suited for environments with dynamic traffic

patterns.

The results conclusively show that

Canary deployments, despite their more

complex setup, outperform Blue-Green

deployments in Kubernetes environments in

terms of scalability, resilience, and rollback

control. While Blue-Green deployments are

well-suited for specific use cases such as low-

frequency full system updates or scenarios

requiring instant full rollback, Canary

deployments are more adaptable to modern,

dynamic environments. Canary's strengths

make it particularly suitable for real-time

microservices, frequent code delivery, and

data-driven Site Reliability Engineering (SRE)

environments, where observability and

progressive rollout are essential. By leveraging

Canary's capabilities, teams can achieve more

reliable and efficient deployments, better

aligning with the demands of contemporary

software development and operations.

Limitations and Future Research:

This study, despite its comprehensive

nature, is subject to several limitations that

warrant acknowledgment. Firstly, the

experiments were conducted in a controlled

Kubernetes cluster with simulated traffic,

which may not fully replicate the complexities

of real-world production environments where

factors like network latency and inter-service

dependencies play a role. Additionally, the

study's focus on stateless microservices limits

its generalizability to stateful services or

applications with different transactional

dynamics. The reliance on specific tools like

Istio and Prometheus may also introduce bias,

as alternative configurations could yield

different outcomes. Furthermore, the short-

term observation window may overlook long-

term performance implications such as

memory leaks or autoscaler recalibration.

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

51

Finally, the single-cluster setup does not

account for the complexities of multi-region or

hybrid cloud deployments, where network

latency and routing could impact deployment

strategy effectiveness. These limitations

highlight areas for future research to further

validate and extend the findings.

Future research directions building

upon this study's findings could explore

several key areas. Firstly, evaluating Blue-

Green and Canary deployments in multi-

cluster and edge environments would provide

insights into their performance under

geographically distributed scenarios.

Secondly, integrating AI/ML-driven

autoscalers could optimize rollout and rollback

processes. Thirdly, investigating the impact of

these deployment patterns on stateful and

streaming applications would be valuable.

Additionally, examining security and

compliance considerations, developing cost

optimization models, and exploring human-in-

the-loop rollback strategies could further

enhance the understanding and application of

these deployment strategies in real-world

contexts

Conclusion:

The evolution of microservices and

cloud-native architectures has made

deployment strategies a critical component of

system reliability, performance, and agility.

This research undertook a comprehensive

comparative study of two widely adopted

Kubernetes deployment models—Blue-Green

and Canary—with a specific focus on their

scalability, rollback efficiency, and operational

resilience. Through a series of controlled

experiments involving simulated workloads,

traffic spikes, and induced failure scenarios,

the study revealed that Canary deployments

offer superior scalability and fault isolation,

particularly in dynamic and high-concurrency

environments. Canary's gradual rollout

mechanism, when paired with real-time

telemetry and autoscaling logic, allowed for

more adaptive system behavior and lower tail-

end latency. Although rollbacks in Canary

deployments were slightly slower than in

Blue-Green, they were more targeted and

resulted in fewer service disruptions. In

contrast, Blue-Green deployments excelled in

environments where simplicity, predictability,

and full rollback speed were more critical than

resource efficiency. Their ease of setup and

binary traffic switching model made them

well-suited for monolithic or low-frequency

release pipelines. However, they incurred

higher infrastructure overhead due to

environment duplication and showed

limitations under burst and sustained traffic

loads. Ultimately, the study demonstrates that

neither strategy is universally superior, but

rather, the optimal choice depends on the

deployment context, risk tolerance, and

observability maturity of the organization. For

teams prioritizing fine-grained control,

progressive delivery, and minimal blast radius,

Canary deployment is the preferred model. For

organizations requiring rapid full-system

switches with limited infrastructure

complexity, Blue-Green remains a viable

option. This work contributes to the ongoing

discourse on DevOps and cloud-native

deployment best practices by providing data-

driven insights, real-world metrics, and

empirical comparisons between deployment

strategies. It also lays a foundation for future

exploration into multi-cluster, AI-enhanced

autoscaling, and hybrid deployment models

that can further optimize the balance between

speed, safety, and efficiency in modern

application delivery pipelines.

IJAAR Vol. 6 No. 38 ISSN – 2347-7075

Amit K. Mogal & Vaibhav P. Sonaje

52

References:

1. James, A., & Gideon, A. (2024). Blue-

Green and Canary Deployments in

Microservices Ecosystems. ResearchGate.

https://www.researchgate.net/publication/3

91018435

2. Prabu, V. P. (2024). Optimizing

Microservices with Kubernetes for

Enterprise Applications. ResearchGate.

https://www.researchgate.net/publication/3

90695881

3. Vangala, V. (2025). Blue-Green and

Canary Deployments in DevOps: A

Comparative Study. ResearchGate.

https://www.researchgate.net/publication/3

88490305

4. Idowu, M. (2024). A Deep Dive into Blue-

Green and Canary Deployments: Benefits,

Challenges, and Best Practices.

ResearchGate.

https://www.researchgate.net/publication/3

90108683

5. William, E., & Mercy, D. (2025).

Deployment Rollbacks and Fail-Safes in

Cloud Pipelines. ResearchGate.

https://www.researchgate.net/publication/3

91024117

6. Rakshit, H., & Banerjee, S. (2024).

Scalability Evaluation on Zero Downtime

Deployment in Kubernetes Cluster. IEEE

Xplore.

https://ieeexplore.ieee.org/document/1091

4046

7. Reid, A., & James, A. (2025). Automating

Blue-Green and Canary Deployments in

Kubernetes Using Terraform Modules.

ResearchGate.

https://www.researchgate.net/publication/3

91449899

8. Amgothu, S. (2024). Innovative CI/CD

Pipeline Optimization through Canary and

Blue-Green Deployment. International

Journal of Computer Applications.

https://www.researchgate.net/publication/3

86143021

9. Sun-Rise, G. (2025). Zero Downtime

Deployments: SRE Strategies for

Continuous Delivery. IJMSM.

https://www.ijmsm.org/volume1-

issue2/IJMSM-V1I2P102.pdf

10. Grafana. (n.d.). k6 Documentation.

Retrieved June 14, 2025, from

https://grafana.com/docs/k6/latest/

https://www.researchgate.net/publication/391018435
https://www.researchgate.net/publication/391018435
https://www.researchgate.net/publication/390695881
https://www.researchgate.net/publication/390695881
https://www.researchgate.net/publication/388490305
https://www.researchgate.net/publication/388490305
https://www.researchgate.net/publication/390108683
https://www.researchgate.net/publication/390108683
https://www.researchgate.net/publication/391024117
https://www.researchgate.net/publication/391024117
https://ieeexplore.ieee.org/document/10914046
https://ieeexplore.ieee.org/document/10914046
https://www.researchgate.net/publication/391449899
https://www.researchgate.net/publication/391449899
https://www.researchgate.net/publication/386143021
https://www.researchgate.net/publication/386143021
https://www.ijmsm.org/volume1-issue2/IJMSM-V1I2P102.pdf
https://www.ijmsm.org/volume1-issue2/IJMSM-V1I2P102.pdf
https://grafana.com/docs/k6/latest/

