International Journal of Advance and Applied Research

www.ljaar.co.in

ISSN - 2347-7075 Impact Factor - 8.141
Peer Reviewed Bi-Monthly
Vol. 6 No. 38 September - October - 2025

Al Based Mind Map Programming Tutor

Deo Sharmila Mahesh
Assistant Professor,
Dr. D. Y. Patil Science and Computer Science College, Akurdi Pune
Corresponding Author — Deo Sharmila Mahesh
DOI -10.5281/zenodo.17313221

Abstract:

The increasing adoption of Al-driven programming assistants has significantly transformed the
landscape of coding education. Despite these advancements, most existing intelligent tutoring systems
emphasize answer generation rather than diagnosing learners’ underlying misconceptions and
providing adaptive remediation. This paper introduces the Mind-Map Programming Tutor (MMPT), a
novel system that employs cognitive graphs to model learners’ evolving knowledge states. In contrast to
traditional Al tutors that require pre-annotated student data for training, MMPT leverages zero-shot
reasoning to infer misconceptions directly from student code submissions. It dynamically constructs a
cognitive error graph that captures conceptual misunderstandings, knowledge gaps, and logical
inconsistencies.

Based on this cognitive representation, MMPT adapts the difficulty of assigned problems,
delivers personalized hints, and generates scaffolded explanations aligned with the learner’s current
knowledge graph. The proposed methodology integrates principles from cognitive psychology, graph-
based knowledge modeling, and zero-shot learning to support personalized and scalable programming
instruction. Preliminary simulations indicate that the system improves learning retention, minimizes the
recurrence of misconceptions, and lays a strong foundation for

conceptual understanding, nor do they identify
or remediate specific misconceptions. This
lack of cognitive awareness hinders their

Introduction:
1.Background:
Programming education remains a

critical skill in the digital era. Traditional
tutoring methods and online platforms often
rely on static problem sets or pre-trained
models with limited adaptability. Recent
advances in natural language processing
(NLP) and graph-based reasoning provide
opportunities to create more adaptive, scalable
tutoring solutions.
2.Problem Statement:

Current Al tutoring systems are
predominantly answer-oriented rather than
learner-oriented. They do not maintain a

representation of the learner’s evolving

ability to provide truly personalized and
effective instruction. The growing demand for
accessible and  effective  programming
education has led to widespread interest in
intelligent tutoring technologies. Despite this
trend, many learners continue to struggle with
abstract programming concepts such as
recursion, data structures, and debugging.
While Intelligent Tutoring Systems (ITS) like
CodeTutor and Al-powered tools such as
GitHub  Copilot offer real-time code
suggestions, these systems largely fail to

interpret or model the learner’s underlying

199


http://www.ijaar.co.in/

IJAAR

cognitive processes. They prioritize solution
generation over educational diagnosis, thus
limiting their effectiveness as pedagogical
tools.

3.0Objective:

To address this limitation, the present
work introduces the ‘Mind-Map Programming
Tutor (MMPT)’ , a novel intelligent tutoring
framework that leverages cognitive graphs to
infer learners” knowledge states. Unlike
traditional systems that depend on labeled
training data, MMPT employs zero-shot
reasoning to detect misconceptions and
dynamically construct individualized cognitive
graphs based on learner interactions.

This paper makes three key
contributions: (1) it presents a framework for
constructing dynamic cognitive graphs from
student code submissions and interactions; (2)
it applies Mind Map reasoning techniques to
identify programming misconceptions without
the need for annotated training data; and (3) it
introduces an adaptive tutoring system that
modifies the sequence and difficulty of
programming problems based on the learner’s
evolving cognitive graph.

Related Work:
Intelligent Tutoring Systems (ITS):
Traditional ITS platforms rely heavily
on structured knowledge bases and annotated
datasets to deliver feedback and track
progress. Systems such as Cognitive Tutor
have demonstrated success in domains like
mathematics, but their reliance on pre-defined

Deo Sharmila Mahesh

Vol. 6 No. 38

ISSN - 2347-7075

rules and labeled data limits scalability and
adaptability in open-ended domains such as
programming.

Graph-Based Learning Models:

Prior work in learner modeling has
explored techniques such as Bayesian
knowledge tracing and deep knowledge
tracing using Long Short-Term Memory
(LSTM) networks (Piech et al., 2015). These
approaches aim to model student performance
over time but typically focus on correctness
rather than cognitive understanding. They are
ill-suited to identifying nuanced
misconceptions that arise in programming
tasks.

Zero-Shot Learning in Education:

Zero-shot learning has seen significant
application in natural language processing and
computer vision tasks (Brown et al., 2020),
where models generalize to novel classes
without explicit training examples. However,
its use in educational contexts remains limited.
Few studies have explored its potential to infer
learner states or misconceptions in the absence
of labeled educational data.

Research Gap:

To date, no existing intelligent
tutoring system has successfully integrated
zero-shot inference with cognitive graph
modeling to support adaptive programming
instruction. This research aims to fill that gap
by combining these two methodologies into a
unified system capable of delivering scalable,
personalized, and cognitively informed
programming education.

200



IJAAR

Vol. 6 No. 38

ISSN - 2347-7075

Metric

Baseline Systems (Static /
Rule-based)

MMPT (Proposed
System)

Retention Rate

Moderate — limited
reinforcement of concepts

High — reinforced via
Cognitive Graph and
adaptive revisits

Misconception Resolution
Speed

Slow — relies on repeated
trial and error

Fast — targeted graph-based
remediation of weak nodes

Learning Path

Personalization sequence

None — fixed or random

Strong — adaptive
sequencing based on
knowledge state

Frustration Levels

problems

Higher — learners face
unrelated or repeated

Lower — learners progress
through relevant,
scaffolded problems

Learner Confidence
generic

Moderate — feedback often

High — personalized,
explanatory feedback
improves self-efficacy

Scalability to New Errors

Limited — requires
predefined rules/training

Strong — Zero-Shot model
generalizes to unseen
misconceptions

System Architecture:

The proposed system adopts a multi-
layered architecture to enable personalized
tutoring by integrating Zero-Shot
Misconception  Detection and Cognitive
Graphs. At the input layer, the student submits
a code attempt in response to a programming
problem. This input includes the source code,
execution results (such as test case outcomes),
and metadata such as the time taken, number
of attempts, and potentially other behavioral
indicators (e.g., edit history or submission
intervals). The raw input is processed by the
Misconception Detector, which leverages a
Zero-Shot Learning (ZSL) model to identify
potential conceptual misunderstandings
without requiring extensive task-specific
annotated datasets (Brown et al., 2020; Wang
et al., 2021). The ZSL model generalizes from

pretrained  embeddings and  reasoning

Deo Sharmila Mahesh

capabilities to detect erroneous code patterns
and map them to specific conceptual
misconceptions. For example, an off-by-one
error in loop indexing may be indicative of a
misunderstanding  of  loop  boundary
conditions. By aligning semantic
representations of the student’s code with
known misconception templates, the model
can identify previously unseen error patterns
and provide natural language explanations
with  corresponding confidence estimates
(Reimers & Gurevych, 2019).

To personalize feedback and track
learner progress, the system maintains a
dynamic Cognitive Graph for each student. In
this graph, nodes represent core programming
concepts such as recursion, loop construction,
or array indexing, while edges encode the
relationships and dependencies among these
concepts. Each node maintains individualized

201



IJAAR

information about the student’s inferred
mastery level, misconception history, and
temporal learning trajectory. When a
misconception is detected, the corresponding
concept node is updated, enabling the system
to monitor evolving knowledge gaps. This
structure facilitates adaptive interventions by

Methodology:

User Interface
(Learners)

Natural Language Processing
(Understanding Queries)

Qe‘aming Path & Misconceptions

Vol. 6 No. 38

earner Queries |Learner Respons%?erformance Reports

Feedback & Analytics
(Progress Tracking, Reports)

Wed Concepts '/J pdate Cognitive Graph

Cognitive Graph
(Concept Mapping & Misconception Detection)

ISSN - 2347-7075

generating targeted, data-driven feedback,
including  tailored explanations, visual
scaffolds. The system delivers a scalable and
personalized tutoring experience grounded in
the principles of cognitive science and modern
machine learning.

xplanations, Hints, Solutions

Reasoning Engine

(Adaptive Problem Solving)

@trieve Examples & ProblenBRelevant Content

Knowledge Base

(Course Material, Examples, Problems)

1. Dataset:

The dataset used in this study
comprises programming problems, student
code submissions, and manually annotated
error labels for evaluation purposes. The
programming problems span a range of
difficulty levels—Dbeginner, intermediate, and
advanced—and are designed to assess
understanding of fundamental programming
concepts such as variables, loops, conditionals,
recursion, and data structures. Student code
submissions were collected from publicly
available sources, including open-source
platforms such as Codeforces and LeetCode,
as well as anonymized classroom data. To
enable gquantitative evaluation of the system's
zero-shot misconception detection capabilities,

Deo Sharmila Mahesh

a manually annotated subset of student
submissions was prepared, labeling specific
misconceptions observed in the code.

2. Environment:

The experiments were conducted on a
computing environment equipped with an Intel
Xeon CPU and an NVIDIA Tesla V100 GPU
to support model inference and embedding
computation. The system was provisioned
with 32 GB of RAM to manage large-scale
graph structures and model weights. The
software stack includes Python 3.10, along
with machine learning and graph processing
libraries. PyTorch and Hugging Face
Transformers were used to implement and
fine-tune the zero-shot misconception detector.
For graph construction and analysis,

202



IJAAR

NetworkX was employed alongside Neo4j,
which served as the graph database.
Evaluation metrics were computed using
Scikit-learn, and experimental workflows were
conducted using Jupyter notebooks to facilitate
analysis and visualization.

3. System Configuration:

The core component of the system is
the Zero-Shot Misconception Detector, which
is based on a pretrained transformer
architecture, such as RoBERTa or a GPT-like
model. This model is fine-tuned on joint code
and execution trace embeddings to predict
misconception categories without requiring
explicit prior examples. Inputs to the model
include both the student's submitted code and
its execution trace, while outputs correspond
to identified misconceptions mapped to
predefined conceptual categories.

The Cognitive Graph Generator
models the learner's understanding by
dynamically constructing a graph in which
nodes represent programming concepts (e.g.,
loops, recursion), and edges capture
prerequisite or usage relationships between
them. When misconceptions are detected, the
corresponding nodes or edges in the graph are
weakened, reflecting the learner’s difficulty
with those concepts.

The Adaptive Problem Selector
operates on the cognitive graph to determine
the next most appropriate problem for the
learner. It incorporates centrality measures and
weakness scores to prioritize problems that
reinforce underdeveloped concepts while
maintaining a trajectory of increasing
complexity to support gradual  skill
acquisition.

The Feedback Generator combines
template-based messaging with large language
model (LLM)-generated explanations. It
provides students with misconception-aware
feedback, including visual overlays on the

Deo Sharmila Mahesh

Vol. 6 No. 38

ISSN - 2347-7075

cognitive graph that highlight weak concepts
and explain the rationale behind selected
learning paths.

4. Evaluation Protocol:

The system was evaluated through
controlled interaction with a group of student
participants, including both novice and
intermediate programmers. Each participant
engaged with the system over multiple
problem-solving sessions. Several evaluation
metrics were employed. Misconception
Detection Accuracy was assessed using
precision, recall, and F1-score computed
against the manually annotated ground truth.
Learning Gain was measured by comparing
pre-test and post-test scores to evaluate
conceptual understanding. Problem-Solving
Efficiency was quantified by the reduction in
the number of attempts required to solve
problems after receiving targeted feedback.
User Experience was evaluated through
surveys capturing participants' perceptions of
the system’s usefulness, clarity, and
motivational impact.

5. Baselines for Comparison:

To contextualize the  system's
performance, comparisons were made against
several baseline approaches. These included
rule-based feedback systems that deliver
predefined hints based on pattern-matched
errors, and supervised error classification
models trained on labeled data. Additionally, a
random problem selection strategy was used to
evaluate the efficacy of the adaptive problem
sequencing employed by the proposed system.
6. Experimental Flow:

The experimental procedure was
divided into four phases. During the Student
Interaction Phase, students submitted code
attempts, and the system  detected
misconceptions while updating the cognitive
graph in real time. In the Adaptive Tutoring
Phase, the problem selector used the updated

203



IJAAR

graph to assign personalized problems, and the
feedback generator provided concept-specific
guidance. The Data Collection Phase involved
logging all student interactions, including code
submissions, detected misconceptions, and
progress metrics. Finally, the Evaluation Phase
compared the proposed Zero-Shot Cognitive
Graph Tutor to baseline models using the
defined performance metrics, aiming to assess
improvements in accuracy, learning outcomes,
efficiency, and user experience.

Case Studies and Applications:

Case Study 1: Learners struggling with
recursion concepts were guided through
progressively simpler problem
decompositions.

Case Study 2: Debugging misconceptions
were addressed by adaptive hint generation.
Applications:

The Mind-Map Programming Tutor
(MMPT) presents numerous applications
across educational and professional domains.
Intelligent Tutoring Systems (ITS):

MMPT can be integrated into online
coding platforms and Massive Open Online
Courses (MOOCs) such as Coursera, edX, and
Codeforces. Unlike traditional systems that
offer generic feedback, MMPT delivers
personalized guidance tailored to the learner’s
specific misconceptions. This enables more
effective  concept  reinforcement  and
accelerated learning.

Classroom Teaching Support:

In traditional classroom environments,
educators can leverage cognitive graph
dashboards generated by MMPT to monitor
both individual and group-level
misconceptions. These visual analytics support
data-driven interventions, allowing teachers to
implement targeted remedial instruction based
on specific conceptual weaknesses.

Skill Assessment and Certification.

Deo Sharmila Mahesh

Vol. 6 No. 38

ISSN - 2347-7075

MMPT enables a more nuanced form
of skill assessment by evaluating conceptual
mastery progression rather than merely final
problem-solving success. This approach is
particularly  beneficial  for certification
platforms, which often aim to assess deep
understanding over rote memorization.
Corporate Training and Upskilling:

In professional contexts, MMPT can
be employed in employee training programs to
facilitate the learning of new programming
languages and frameworks. Its adaptive
learning path functionality reduces training
duration and enhances learners’ confidence in
applying skills in real-world scenarios.
Cross-Domain Adaptation:

Although MMPT is designed for
programming education, the underlying
cognitive graph framework is extensible to
other domains such as mathematics, logical
reasoning, and language learning—any
domain where conceptual dependencies can be
mapped and dynamically updated.
Educational Research and Analytics:

MMPT also serves as a valuable tool
for educational researchers. It provides access
to rich, real-time data on learner
misconceptions and conceptual trajectories.
This supports studies into how students
internalize programming concepts and how
adaptive interventions influence retention,
confidence, and motivation.

Challenges and Limitations

Scalability: Maintaining real-time graph
updates for large learner groups remains a
significant challenge, as the system must
process and adapt quickly to multiple learners
simultaneously.

Interpretability: The complexity of reasoning
pathways within the cognitive graph may
sometimes confuse learners, making it difficult

204



IJAAR
to trace or understand how certain solutions
are generated.

Domain  Adaptability: The  current
implementation is limited to programming
education. Extending the framework to other
subject domains will require re-engineering of
both the knowledge base and reasoning
components.

Resource Dependency: The approach relies
on extensive computational resources for
natural language processing and reasoning,
which may limit its deployment in resource-
constrained environments.

Conclusion:

This research introduces the Mind-
Map Programming Tutor (MMPT), a novel
framework that integrates a Zero-Shot
Misconception Detector, a Cognitive Graph
Generator, and an Adaptive Problem Selector
to deliver personalized, concept-aware
programming education. Unlike static rule-
based tutoring systems, MMPT dynamically
identifies misconceptions, models learner
understanding through evolving cognitive
graphs, and adapts instructional content
accordingly.

The proposed system demonstrates the
potential to improve conceptual retention,
accelerate the resolution of misunderstandings,
and increase learner confidence by minimizing
frustration during the learning process. These
characteristics make MMPT suitable for
deployment in both individual learning
scenarios and  large-scale  educational
platforms, including MOOCs and corporate
training environments.

Future Work:

Several directions are identified for future
research and system enhancement:
Large-Scale Deployment and Validation:
Future efforts will focus on conducting

Deo Sharmila Mahesh

Vol. 6 No. 38

ISSN - 2347-7075

longitudinal studies with diverse learner
populations  across MOOCs, coding
bootcamps, and  traditional  classroom
environments to assess the scalability and
effectiveness of MMPT in real-world settings.
Multimodal =~ Misconception  Detection:
MMPT may be enhanced by integrating
additional data modalities, such as eye-
tracking, keystroke dynamics, and learners’
natural language explanations, to build more
comprehensive learner models.

Adaptive Feedback Generation with
Explainable Al: Improvements to the
feedback module will explore the use of
explainable Al techniques to deliver context-
sensitive, natural language explanations and
visual graph-based feedback.

Gamification and Motivation Strategies:
Incorporating gamification elements—such as
progression levels, achievement badges, and
peer performance comparisons—could further
enhance learner motivation and engagement.
Cross-Domain Extension: The cognitive
graph framework underpinning MMPT s
domain-agnostic and may be adapted for use
in other areas such as mathematics, logic, and
language learning, offering a foundation for
universal adaptive tutoring.

Ethical and Fairness Considerations:
Ongoing work will also investigate the
fairness and transparency of the system,
including the mitigation of potential biases in
misconception detection across different
demographic groups to ensure equitable access
and outcomes.

References:

1. Anderson, J. R., Corbett, A. T,
Koedinger, K. R., & Pelletier, R. (1995).
Intelligent tutoring systems. Science,
268(5210), 456-462.
[https://doi.org/10.1126/science.7701348]
(https://doi.org/10.1126/science.7701348)

205



IJAAR
2. Brown, T. B., Mann, B., Ryder, N.,

Subbiah, M., Kaplan, J. D., Dhariwal, P.,
& Amodei, D. (2020). Language models
are few-shot learners. ‘Advances in
Neural Information Processing Systems’,
‘33”, 1877-1901.

Piech, C., Bassen, J., Huang, J., Ganguli,
S., Sahami, M., Guibas, L. J., & Sohl-

Deo Sharmila Mahesh

Vol. 6 No. 38

ISSN - 2347-7075
Dickstein, J. (2015). Deep knowledge

tracing. In ‘Advances in Neural
Information Processing Systems’ (pp.
505-513).

VanLehn, K. (2006). The behavior of
tutoring systems. ‘International Journal of
Artificial Intelligence in Education’,
‘16°(3), 227-265.

206



