
199 

 

International Journal of Advance and Applied Research 
www.ijaar.co.in 

 

ISSN – 2347-7075 Impact Factor – 8.141 
Peer Reviewed Bi-Monthly   

 Vol. 6  No. 38 September  - October  - 2025  
 

AI Based Mind Map Programming Tutor 

 

Deo Sharmila Mahesh 

 Assistant Professor,  

Dr. D. Y. Patil Science and Computer Science College, Akurdi Pune 

Corresponding Author – Deo Sharmila Mahesh      

DOI - 10.5281/zenodo.17313221
 

 

Abstract: 

 The increasing adoption of AI-driven programming assistants has significantly transformed the 

landscape of coding education. Despite these advancements, most existing intelligent tutoring systems 

emphasize answer generation rather than diagnosing learners’ underlying misconceptions and 

providing adaptive remediation. This paper introduces the Mind-Map Programming Tutor (MMPT), a 

novel system that employs cognitive graphs to model learners’ evolving knowledge states. In contrast to 

traditional AI tutors that require pre-annotated student data for training, MMPT leverages zero-shot 

reasoning to infer misconceptions directly from student code submissions. It dynamically constructs a 

cognitive error graph that captures conceptual misunderstandings, knowledge gaps, and logical 

inconsistencies. 

Based on this cognitive representation, MMPT adapts the difficulty of assigned problems, 

delivers personalized hints, and generates scaffolded explanations aligned with the learner’s current 

knowledge graph. The proposed methodology integrates principles from cognitive psychology, graph-

based knowledge modeling, and zero-shot learning to support personalized and scalable programming 

instruction. Preliminary simulations indicate that the system improves learning retention, minimizes the 

recurrence of misconceptions, and lays a strong foundation for 

 

Introduction: 

1.Background: 

Programming education remains a 

critical skill in the digital era. Traditional 

tutoring methods and online platforms often 

rely on static problem sets or pre-trained 

models with limited adaptability. Recent 

advances in natural language processing 

(NLP) and graph-based reasoning provide 

opportunities to create more adaptive, scalable 

tutoring solutions. 

2.Problem Statement: 

Current AI tutoring systems are 

predominantly answer-oriented rather than 

learner-oriented. They do not maintain a 

representation of the learner’s evolving 

conceptual understanding, nor do they identify 

or remediate specific misconceptions. This 

lack of cognitive awareness hinders their 

ability to provide truly personalized and 

effective instruction. The growing demand for 

accessible and effective programming 

education has led to widespread interest in 

intelligent tutoring technologies. Despite this 

trend, many learners continue to struggle with 

abstract programming concepts such as 

recursion, data structures, and debugging. 

While Intelligent Tutoring Systems (ITS) like 

CodeTutor and AI-powered tools such as 

GitHub Copilot offer real-time code 

suggestions, these systems largely fail to 

interpret or model the learner’s underlying 

http://www.ijaar.co.in/


IJAAR    Vol. 6 No. 38  ISSN – 2347-7075 
 

Deo Sharmila Mahesh 

200 

cognitive processes. They prioritize solution 

generation over educational diagnosis, thus 

limiting their effectiveness as pedagogical 

tools. 

3.Objective: 

To address this limitation, the present 

work introduces the ‘Mind-Map Programming 

Tutor (MMPT)’ , a novel intelligent tutoring 

framework that leverages cognitive graphs to 

infer learners’ knowledge states. Unlike 

traditional systems that depend on labeled 

training data, MMPT employs zero-shot 

reasoning to detect misconceptions and 

dynamically construct individualized cognitive 

graphs based on learner interactions. 

This paper makes three key 

contributions: (1) it presents a framework for 

constructing dynamic cognitive graphs from 

student code submissions and interactions; (2) 

it applies Mind Map  reasoning techniques to 

identify programming misconceptions without 

the need for annotated training data; and (3) it 

introduces an adaptive tutoring system that 

modifies the sequence and difficulty of 

programming problems based on the learner’s 

evolving cognitive graph. 

 

Related Work: 

Intelligent Tutoring Systems (ITS): 

Traditional ITS platforms rely heavily 

on structured knowledge bases and annotated 

datasets to deliver feedback and track 

progress. Systems such as Cognitive Tutor  

have demonstrated success in domains like 

mathematics, but their reliance on pre-defined 

rules and labeled data limits scalability and 

adaptability in open-ended domains such as 

programming. 

Graph-Based Learning Models: 

 Prior work in learner modeling has 

explored techniques such as Bayesian 

knowledge tracing and deep knowledge 

tracing using Long Short-Term Memory 

(LSTM) networks (Piech et al., 2015). These 

approaches aim to model student performance 

over time but typically focus on correctness 

rather than cognitive understanding. They are 

ill-suited to identifying nuanced 

misconceptions that arise in programming 

tasks. 

Zero-Shot Learning in Education: 

Zero-shot learning has seen significant 

application in natural language processing and 

computer vision tasks (Brown et al., 2020), 

where models generalize to novel classes 

without explicit training examples. However, 

its use in educational contexts remains limited. 

Few studies have explored its potential to infer 

learner states or misconceptions in the absence 

of labeled educational data. 

Research Gap: 

To date, no existing intelligent 

tutoring system has successfully integrated 

zero-shot inference with cognitive graph 

modeling to support adaptive programming 

instruction. This research aims to fill that gap 

by combining these two methodologies into a 

unified system capable of delivering scalable, 

personalized, and cognitively informed 

programming education. 

  



IJAAR    Vol. 6 No. 38  ISSN – 2347-7075 
 

Deo Sharmila Mahesh 

201 

 

 

System Architecture: 

The proposed system adopts a multi-

layered architecture to enable personalized 

tutoring by integrating Zero-Shot 

Misconception Detection and Cognitive 

Graphs. At the input layer, the student submits 

a code attempt in response to a programming 

problem. This input includes the source code, 

execution results (such as test case outcomes), 

and metadata such as the time taken, number 

of attempts, and potentially other behavioral 

indicators (e.g., edit history or submission 

intervals). The raw input is processed by the 

Misconception Detector, which leverages a 

Zero-Shot Learning (ZSL) model to identify 

potential conceptual misunderstandings 

without requiring extensive task-specific 

annotated datasets (Brown et al., 2020; Wang 

et al., 2021). The ZSL model generalizes from 

pretrained embeddings and reasoning 

capabilities to detect erroneous code patterns 

and map them to specific conceptual 

misconceptions. For example, an off-by-one 

error in loop indexing may be indicative of a 

misunderstanding of loop boundary 

conditions. By aligning semantic 

representations of the student’s code with 

known misconception templates, the model 

can identify previously unseen error patterns 

and provide natural language explanations 

with corresponding confidence estimates 

(Reimers & Gurevych, 2019). 

To personalize feedback and track 

learner progress, the system maintains a 

dynamic Cognitive Graph for each student. In 

this graph, nodes represent core programming 

concepts such as recursion, loop construction, 

or array indexing, while edges encode the 

relationships and dependencies among these 

concepts. Each node maintains individualized 

Metric Baseline Systems (Static / 

Rule-based) 

MMPT (Proposed 

System) 

Retention Rate Moderate – limited 

reinforcement of concepts 

High – reinforced via 

Cognitive Graph and 

adaptive revisits 

Misconception Resolution 

Speed 

Slow – relies on repeated 

trial and error 

Fast – targeted graph-based 

remediation of weak nodes 

Learning Path 

Personalization 

None – fixed or random 

sequence 

Strong – adaptive 

sequencing based on 

knowledge state 

Frustration Levels Higher – learners face 

unrelated or repeated 

problems 

Lower – learners progress 

through relevant, 

scaffolded problems 

Learner Confidence Moderate – feedback often 

generic 

High – personalized, 

explanatory feedback 

improves self-efficacy 

Scalability to New Errors Limited – requires 

predefined rules/training 

Strong – Zero-Shot model 

generalizes to unseen 

misconceptions 



IJAAR    Vol. 6 No. 38  ISSN – 2347-7075 
 

Deo Sharmila Mahesh 

202 

information about the student’s inferred 

mastery level, misconception history, and 

temporal learning trajectory. When a 

misconception is detected, the corresponding 

concept node is updated, enabling the system 

to monitor evolving knowledge gaps. This 

structure facilitates adaptive interventions by 

generating targeted, data-driven feedback, 

including tailored explanations, visual 

scaffolds. The system delivers a scalable and 

personalized tutoring experience grounded in 

the principles of cognitive science and modern 

machine learning. 

 

Methodology: 

 

1. Dataset: 

The dataset used in this study 

comprises programming problems, student 

code submissions, and manually annotated 

error labels for evaluation purposes. The 

programming problems span a range of 

difficulty levels—beginner, intermediate, and 

advanced—and are designed to assess 

understanding of fundamental programming 

concepts such as variables, loops, conditionals, 

recursion, and data structures. Student code 

submissions were collected from publicly 

available sources, including open-source 

platforms such as Codeforces and LeetCode, 

as well as anonymized classroom data. To 

enable quantitative evaluation of the system's 

zero-shot misconception detection capabilities, 

a manually annotated subset of student 

submissions was prepared, labeling specific 

misconceptions observed in the code. 

2. Environment: 

The experiments were conducted on a 

computing environment equipped with an Intel 

Xeon CPU and an NVIDIA Tesla V100 GPU 

to support model inference and embedding 

computation. The system was provisioned 

with 32 GB of RAM to manage large-scale 

graph structures and model weights. The 

software stack includes Python 3.10, along 

with machine learning and graph processing 

libraries. PyTorch and Hugging Face 

Transformers were used to implement and 

fine-tune the zero-shot misconception detector. 

For graph construction and analysis, 



IJAAR    Vol. 6 No. 38  ISSN – 2347-7075 
 

Deo Sharmila Mahesh 

203 

NetworkX was employed alongside Neo4j, 

which served as the graph database. 

Evaluation metrics were computed using 

Scikit-learn, and experimental workflows were 

conducted using Jupyter notebooks to facilitate 

analysis and visualization. 

3. System Configuration: 

The core component of the system is 

the Zero-Shot Misconception Detector, which 

is based on a pretrained transformer 

architecture, such as RoBERTa or a GPT-like 

model. This model is fine-tuned on joint code 

and execution trace embeddings to predict 

misconception categories without requiring 

explicit prior examples. Inputs to the model 

include both the student's submitted code and 

its execution trace, while outputs correspond 

to identified misconceptions mapped to 

predefined conceptual categories. 

The Cognitive Graph Generator 

models the learner's understanding by 

dynamically constructing a graph in which 

nodes represent programming concepts (e.g., 

loops, recursion), and edges capture 

prerequisite or usage relationships between 

them. When misconceptions are detected, the 

corresponding nodes or edges in the graph are 

weakened, reflecting the learner’s difficulty 

with those concepts. 

The Adaptive Problem Selector 

operates on the cognitive graph to determine 

the next most appropriate problem for the 

learner. It incorporates centrality measures and 

weakness scores to prioritize problems that 

reinforce underdeveloped concepts while 

maintaining a trajectory of increasing 

complexity to support gradual skill 

acquisition. 

The Feedback Generator combines 

template-based messaging with large language 

model (LLM)-generated explanations. It 

provides students with misconception-aware 

feedback, including visual overlays on the 

cognitive graph that highlight weak concepts 

and explain the rationale behind selected 

learning paths. 

4. Evaluation Protocol: 

The system was evaluated through 

controlled interaction with a group of student 

participants, including both novice and 

intermediate programmers. Each participant 

engaged with the system over multiple 

problem-solving sessions. Several evaluation 

metrics were employed. Misconception 

Detection Accuracy was assessed using 

precision, recall, and F1-score computed 

against the manually annotated ground truth. 

Learning Gain was measured by comparing 

pre-test and post-test scores to evaluate 

conceptual understanding. Problem-Solving 

Efficiency was quantified by the reduction in 

the number of attempts required to solve 

problems after receiving targeted feedback. 

User Experience was evaluated through 

surveys capturing participants' perceptions of 

the system’s usefulness, clarity, and 

motivational impact. 

5. Baselines for Comparison: 

To contextualize the system's 

performance, comparisons were made against 

several baseline approaches. These included 

rule-based feedback systems that deliver 

predefined hints based on pattern-matched 

errors, and supervised error classification 

models trained on labeled data. Additionally, a 

random problem selection strategy was used to 

evaluate the efficacy of the adaptive problem 

sequencing employed by the proposed system. 

6. Experimental Flow: 

The experimental procedure was 

divided into four phases. During the Student 

Interaction Phase, students submitted code 

attempts, and the system detected 

misconceptions while updating the cognitive 

graph in real time. In the Adaptive Tutoring 

Phase, the problem selector used the updated 



IJAAR    Vol. 6 No. 38  ISSN – 2347-7075 
 

Deo Sharmila Mahesh 

204 

graph to assign personalized problems, and the 

feedback generator provided concept-specific 

guidance. The Data Collection Phase involved 

logging all student interactions, including code 

submissions, detected misconceptions, and 

progress metrics. Finally, the Evaluation Phase 

compared the proposed Zero-Shot Cognitive 

Graph Tutor to baseline models using the 

defined performance metrics, aiming to assess 

improvements in accuracy, learning outcomes, 

efficiency, and user experience. 

Case Studies and Applications: 

Case Study 1: Learners struggling with 

recursion concepts were guided through 

progressively simpler problem 

decompositions. 

Case Study 2: Debugging misconceptions 

were addressed by adaptive hint generation. 

Applications: 

The Mind-Map Programming Tutor 

(MMPT) presents numerous applications 

across educational and professional domains. 

Intelligent Tutoring Systems (ITS): 

MMPT can be integrated into online 

coding platforms and Massive Open Online 

Courses (MOOCs) such as Coursera, edX, and 

Codeforces. Unlike traditional systems that 

offer generic feedback, MMPT delivers 

personalized guidance tailored to the learner’s 

specific misconceptions. This enables more 

effective concept reinforcement and 

accelerated learning. 

Classroom Teaching Support: 

  In traditional classroom environments, 

educators can leverage cognitive graph 

dashboards generated by MMPT to monitor 

both individual and group-level 

misconceptions. These visual analytics support 

data-driven interventions, allowing teachers to 

implement targeted remedial instruction based 

on specific conceptual weaknesses. 

Skill Assessment and Certification. 

MMPT enables a more nuanced form 

of skill assessment by evaluating conceptual 

mastery progression rather than merely final 

problem-solving success. This approach is 

particularly beneficial for certification 

platforms, which often aim to assess deep 

understanding over rote memorization. 

Corporate Training and Upskilling: 

In professional contexts, MMPT can 

be employed in employee training programs to 

facilitate the learning of new programming 

languages and frameworks. Its adaptive 

learning path functionality reduces training 

duration and enhances learners’ confidence in 

applying skills in real-world scenarios. 

Cross-Domain Adaptation: 

Although MMPT is designed for 

programming education, the underlying 

cognitive graph framework is extensible to 

other domains such as mathematics, logical 

reasoning, and language learning—any 

domain where conceptual dependencies can be 

mapped and dynamically updated. 

Educational Research and Analytics: 

MMPT also serves as a valuable tool 

for educational researchers. It provides access 

to rich, real-time data on learner 

misconceptions and conceptual trajectories. 

This supports studies into how students 

internalize programming concepts and how 

adaptive interventions influence retention, 

confidence, and motivation. 

 

Challenges and Limitations 

Scalability: Maintaining real-time graph 

updates for large learner groups remains a 

significant challenge, as the system must 

process and adapt quickly to multiple learners 

simultaneously. 

Interpretability: The complexity of reasoning 

pathways within the cognitive graph may 

sometimes confuse learners, making it difficult 



IJAAR    Vol. 6 No. 38  ISSN – 2347-7075 
 

Deo Sharmila Mahesh 

205 

to trace or understand how certain solutions 

are generated. 

Domain Adaptability: The current 

implementation is limited to programming 

education. Extending the framework to other 

subject domains will require re-engineering of 

both the knowledge base and reasoning 

components. 

Resource Dependency: The approach relies 

on extensive computational resources for 

natural language processing and reasoning, 

which may limit its deployment in resource-

constrained environments. 

 

Conclusion:  

This research introduces the Mind-

Map Programming Tutor (MMPT), a novel 

framework that integrates a Zero-Shot 

Misconception Detector, a Cognitive Graph 

Generator, and an Adaptive Problem Selector 

to deliver personalized, concept-aware 

programming education. Unlike static rule-

based tutoring systems, MMPT dynamically 

identifies misconceptions, models learner 

understanding through evolving cognitive 

graphs, and adapts instructional content 

accordingly. 

The proposed system demonstrates the 

potential to improve conceptual retention, 

accelerate the resolution of misunderstandings, 

and increase learner confidence by minimizing 

frustration during the learning process. These 

characteristics make MMPT suitable for 

deployment in both individual learning 

scenarios and large-scale educational 

platforms, including MOOCs and corporate 

training environments. 

 

Future Work: 

Several directions are identified for future 

research and system enhancement: 

Large-Scale Deployment and Validation: 

Future efforts will focus on conducting 

longitudinal studies with diverse learner 

populations across MOOCs, coding 

bootcamps, and traditional classroom 

environments to assess the scalability and 

effectiveness of MMPT in real-world settings. 

Multimodal Misconception Detection: 

MMPT may be enhanced by integrating 

additional data modalities, such as eye-

tracking, keystroke dynamics, and learners’ 

natural language explanations, to build more 

comprehensive learner models. 

Adaptive Feedback Generation with 

Explainable AI: Improvements to the 

feedback module will explore the use of 

explainable AI techniques to deliver context-

sensitive, natural language explanations and 

visual graph-based feedback. 

Gamification and Motivation Strategies:  

Incorporating gamification elements—such as 

progression levels, achievement badges, and 

peer performance comparisons—could further 

enhance learner motivation and engagement. 

Cross-Domain Extension: The cognitive 

graph framework underpinning MMPT is 

domain-agnostic and may be adapted for use 

in other areas such as mathematics, logic, and 

language learning, offering a foundation for 

universal adaptive tutoring. 

Ethical and Fairness Considerations: 

Ongoing work will also investigate the 

fairness and transparency of the system, 

including the mitigation of potential biases in 

misconception detection across different 

demographic groups to ensure equitable access 

and outcomes. 

 

References: 

1. Anderson, J. R., Corbett, A. T., 

Koedinger, K. R., & Pelletier, R. (1995). 

Intelligent tutoring systems. Science, 

268(5210), 456–462. 

[https://doi.org/10.1126/science.7701348]

(https://doi.org/10.1126/science.7701348) 



IJAAR    Vol. 6 No. 38  ISSN – 2347-7075 
 

Deo Sharmila Mahesh 

206 

2. Brown, T. B., Mann, B., Ryder, N., 

Subbiah, M., Kaplan, J. D., Dhariwal, P.,  

& Amodei, D. (2020). Language models 

are few-shot learners. ‘Advances in 

Neural Information Processing Systems’, 

‘33’, 1877–1901. 

3. Piech, C., Bassen, J., Huang, J., Ganguli, 

S., Sahami, M., Guibas, L. J., & Sohl-

Dickstein, J. (2015). Deep knowledge 

tracing. In ‘Advances in Neural 

Information Processing Systems’ (pp. 

505–513). 

4. VanLehn, K. (2006). The behavior of 

tutoring systems. ‘International Journal of 

Artificial Intelligence in Education’, 

‘16’(3), 227–265. 

 

  


