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Abstract: 

 Empathetic Human-Computer Interaction (HCI) aims to bridge emotional gaps between 

humans and intelligent systems. This paper proposes an enhanced framework for Empathic 

Conversational Systems (ECS) by leveraging machine learning algorithms, multimodal data, and real-

time biosensor integration. The architecture integrates gaze tracking, sentiment analysis, cross-modal 

fusion, and reinforcement-learning-driven response selection. Drawing on state-of-the-art systems such 

as ECMF and MEDUSA, our approach demonstrates robust emotion recognition under naturalistic 

conditions and improved empathetic response alignment. Evaluations on benchmark datasets 

(IEMOCAP, SEMAINE) and a custom biosensor corpus show that the proposed system achieves 85.6% 

accuracy and an F1-score of 0.82, outperforming CNN-LSTM and SVM baselines. 

Applications span healthcare, education, and assistive technologies. Contributions include: 

(i) a scalable multimodal fusion pipeline, (ii) RL-based empathetic policy for adaptive responses, and 

(iii) on-device-friendly biosensor integration strategies. 

Keywords: Human-Computer Interaction, Empathic Conversational Systems, Multimodal Emotion 

Recognition, Reinforcement Learning, Physiological Sensing 

 

Introduction: 

Empathy in Artificial Intelligence 

(AI) is widely regarded as a critical frontier 

in Human-Computer Interaction (HCI). 

While advances in large-scale language and 

vision models have enabled more fluent 

conversations and natural interactions, 

achieving accurate affect recognition and 

context-sensitive empathetic responses 

remains an unsolved challenge (Wafa, 

2025; L. Wu & Lin, 2025). These 

limitations are particularly significant in 

real-world applications such as digital 

mental health support, eldercare 

companions, and personalized tutoring 

systems, where trust, emotional sensitivity, 

and  

 

ethical considerations are paramount 

(Saffaryazdi & Yu, 2025). 

Recent research highlights several 

promising directions, including multimodal 

fusion techniques that integrate audio, 

visual, and textual streams 

(zhang2022multimodal), graph-based 

encoders for modeling social and contextual 

cues (Hu et al., 2025), and staged training 

strategies for robustness across datasets 

(Chatzichristodoulou et al., 2025). 

Despite this progress, many systems 

fail in conditions involving noisy signals, 

subtle affective states, or cultural variability 

in emotional expression. This paper 

proposes a reinforcement learning (RL)–

driven, multimodal architecture that 

http://www.ijaar.co.in/
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integrates physiological sensing and 

adaptive response generation to address 

these limitations. 

 

Related Work: 

Early approaches to emotion 

recognition relied on unimodal signals, 

particularly speech and prosody, often 

modeled using support vector machines 

(SVMs) (soleymani2012emotion). However, 

such systems lacked robustness across 

speakers and environments. Later work 

demonstrated that multimodal fusion—

combining speech, text, and facial 

features—significantly improves recognition 

accuracy (paiva2017empathic; 

zhang2022multimodal). 

Recent innovations include ECMF, 

which introduced cross-modal self-attention 

and label refinement, achieving strong 

performance on multimodal emotion 

benchmarks (Hu 

et al., 2025). Similarly, MEDUSA 

leveraged a four-stage training pipeline and 

ensemble learning, winning the Interspeech 

2025 Speech Emotion Recognition 

challenge (Chatzichristodoulou et al., 2025). 

Physiological signals from wearable 

sensors, including heart rate (HR), galvanic 

skin response (GSR), and EEG activity, are 

now recognized as critical complements to 

audiovisual cues, especially for detecting 

subtle or ambiguous affective states 

(nandini2025physio). Recent transformer-

based fusion models such as HyFusER 

improve emotion recognition via dual cross-

modal attention (Yi et al., 2025), while 

TMNet integrates EEG and speech through 

transformer fusion (Alam et al., 2025). 

Physiological ensemble learning methods 

have also shown robust performance (Liao 

et al., 2025; Nandini et al., 2025). Self-

supervised GNN methods like SS-

EMERGE leverage EEG representations 

effectively (Ahuja & Sethia, 2025), and 

comprehensive reviews by Wu et al. and 

Pillalamarri Shanmugam offer valuable 

overviews of multimodal and EEG-based 

fusion strategies (Pillalamarri & 

Shanmugam, 2025; Y. Wu et al., 2025). 

Hierarchical MoE approaches address real-

world modality variability (Zhu et al., 

2025), and AffectGPT-R1 introduces 

reinforcement learning aligned with 

emotion-wheel metrics for open-vocabulary 

emotion decoding (Lian, 2025). Finally, 

adaptive graph convolution in 

conversational settings demonstrates 

powerful contextual fusion (Feng & Fan, 

2025). 

Nevertheless, adaptive empathetic 

dialogue remains underdeveloped. Few 

studies combine emotion recognition with 

reinforcement learning–based response 

generation, even though empathy requires 

not only recognition but also appropriately 

aligned reactions (Wafa, 2025). 

 

Proposed Methodology: 

Our system processes multimodal 

inputs through a five-stage pipeline (Figures 

1 and ??). 

Stage 1: Multimodal Input: 

Inputs include: 

• Speech & Text: Conversational 

utterances captured via microphone 

and 

transcribed for semantic and prosodic 

analysis. 

• Visual: Facial expressions, micro-

expressions, and contextual scene 

features from camera input. 

• Gaze & Pose: Head orientation and 

gestures modeled as graph-based 

attention cues. 

• Physiological: HR, GSR, and EEG 
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bands collected through wearable 

devices. 

Stage 2: Feature Extraction 

Each modality is encoded through tailored 

networks: 

• Audio/Text: Transformer encoders 

(BERT for text, wav2vec2.0 for 

speech). 

• Visual: Dual-path CNN encoders 

extract both global scene and 

localized facial features. 

• Gaze/Pose: Graph neural networks 

model interpersonal attention and 

non-verbal dynamics. 

• Physiology: CNN-LSTM stacks 

encode biosensor sequences efficiently 

for real-time inference. 

Stage 3: Cross-Modal Fusion 

A cross-modal transformer aligns 

features across time and modality. 

Reliability gating down-weights noisy or 

missing channels, while residual fusion 

ensures stability.  

Stage 4: Reinforcement Learning Policy 

An RL agent selects empathetic 

responses based on a composite reward: 

R(s, a) = w1 · Acc + w2 · EmpScore − w3 · 

Latency. 

Training uses Proximal Policy Optimization 

(PPO), balancing accuracy, empathy 

ratings, and response latency. 

Stage 5: Empathetic Response Generation 

The system outputs empathetic 

responses—verbal, prosodic, or 

behavioral—aligned with user affect and 

conversation history. 

Experimental Setup 

Datasets 

Evaluation used: 

• IEMOCAP: Multimodal 

conversations with scripted and 

improvised affect. 

• SEMAINE: Dyadic interactions with 

fine-grained emotional annotations. 

• Custom Corpus: Biosensor data 

(HR, EDA, EEG) collected under 

controlled affective tasks. 

Baselines and Metrics 

Baselines: (i) SVM (audio-only), (ii) 

CNN-LSTM multimodal fusion. Metrics: 

accuracy, macro-F1, per-class recall, and 

latency. Significance was tested with paired 

t-tests. 

Table 1 compares the performance 

of baseline and proposed models. The 

audio-only SVM baseline achieves 68.2% 

accuracy, highlighting the limitations of 

unimodal approaches. Incorporating 

multimodal fusion through CNN-LSTM 

improves performance to 76.9% accuracy 

and 0.74 macro-F1. The proposed system, 

which integrates multimodal fusion, 

reinforcement learning, and physiological 

signals, significantly outperforms both 

baselines, achieving 85.6% accuracy and an 

F1-score of 0.82. These results indicate that 

physiological sensing and adaptive response 

generation provide complementary cues that 

enhance recognition robustness. 

 

Discussion: 

The system significantly 

outperforms baseline models (p < .01). 

Improvements are most pronounced for 

subtle emotions such as sadness and 

neutrality, consistent with evidence that 

physiology provides complementary cues 

beyond audiovisual signals 

(nandini2025physio). 

Ablation studies show that 

removing physiology decreases macro-F1 

by 4%. 

Disabling RL reduces user-rated 

empathy alignment even though recognition 

accuracy remains similar, echoing claims 

that empathetic response quality cannot be 
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measured solely through classification 

accuracy (Wafa, 2025). These findings 

align with prior multimodal emotion 

recognition studies emphasizing robustness 

and complementarity across modalities 

(zhang2022multimodal; paiva2017empathic). 

 

Limitations: 

Although the proposed system 

demonstrates clear improvements, several 

limitations should be acknowledged. First, 

evaluation relied on relatively controlled 

datasets (IEMOCAP, SEMAINE, and a lab-

collected biosensor corpus), which may not 

fully represent the complexity of in-the-wild 

conversations. Future work should test the 

framework in uncontrolled, real-world 

conditions. 

Second, while physiological signals 

(HR, EDA, EEG) enhance recognition, they 

require wearable devices that may not 

always be practical or comfortable for users 

in daily interactions. Lightweight sensing 

alternatives and calibration-free approaches 

could increase adoption. 

Third, cultural and linguistic 

variability remains underexplored. 

Emotional expressions differ significantly 

across populations, and models trained on 

Western-centric corpora may not generalize 

globally. Addressing cross-cultural fairness 

and inclusivity will be critical for 

deployment in healthcare, education, and 

assistive contexts. 

Finally, reinforcement learning 

introduces computational overhead, which 

may limit real-time performance on 

resource-constrained devices. Optimizing 

policies for efficiency and portability is 

therefore an important direction for future 

development. 

 

Conclusion and Future Work: 

We proposed a multimodal, RL-

enhanced framework for empathetic HCI 

that combines speech, vision, gaze, and 

physiology with reinforcement learning–

driven response generation. The system 

achieves state-of-the-art performance and 

demonstrates improved empathy alignment. 

Future work will explore: 

1. Scaling to diverse, real-world cultural 

contexts. 

2. Developing lightweight, edge-

deployable versions for wearables and 

mobile devices. 

3. Incorporating fairness and privacy 

safeguards into empathetic AI design. 

 

Practical Implications: 

Beyond research contributions, this 

work has direct implications for applied 

domains. In healthcare, empathetic systems 

could provide emotionally sensitive support 

for patients in therapy or rehabilitation. In 

education, adaptive tutors could foster 

greater engagement by responding 

empathetically to learners’ frustration or 

motivation levels. In eldercare and assistive 

technologies, empathetic AI could enhance 

companionship, reduce social isolation, and 

support independence. By integrating 

multimodal sensing with reinforcement 

learning, our framework brings empathetic 

HCI closer to practical, ethically 

responsible deployment in real-world 

settings. 
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Table 1 

Performance comparison of baseline and proposed models on multimodal emotion 

recognition. Accuracy represents the overall classification correctness, while F1-score reflects the 

balance between precision and recall across all emotion classes. The proposed system shows the 

highest performance by integrating multimodal fusion, reinforcement learning, and physiological 

sensing. 

 

Model Accuracy (%) F1-Score 

SVM (Audio-only) 68.2 0.65 

CNN-LSTM (Multimodal) 76.9 0.74 

Proposed System (Fusion+RL+Physio) 85.6 0.82 

 

 

 

 

 

 

 

Figure 1: High-level methodology flow of the proposed empathetic HCI system. 

 

Figure 1 presents the high-level 

flow of the proposed system. The process 

begins with multimodal data collection, 

which includes speech, visual signals, gaze, 

and physiological inputs. Each of these 

modalities is individually encoded through 

specialized feature extractors. The extracted 

features are then passed into a cross-modal 

transformer that aligns temporal and 

contextual representations across channels. 

Following fusion, an RL-based empathy 

policy evaluates the user’s affective state 

and determines an appropriate empathetic 

response. This modular flow ensures that 

raw inputs are progressively refined into 

meaningful affective representations before 

decision - making, thereby increasing both 

robustness and interpretability. 

 

 

Figure 2: Per-emotion classification accuracy of the proposed system. 
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Figure 2 compares per-emotion 

recognition accuracy across the system. 

Emotions such as anger and sadness show 

the greatest improvements, largely due to 

the inclusion of physiological signals that 

capture subtle arousal and stress indicators. 

Joy demonstrates moderate accuracy, 

reflecting the variability in how individuals 

outwardly express positive affect. Neutral 

states remain the most challenging, with 

relatively lower performance, consistent 

with the ambiguity and subtlety of neutral 

expressions. This visualization underscores 

the value of multimodal fusion, as no single 

modality performs consistently across all 

emotion categories. 

 

 

Figure 3: Confusion matrix of emotion classification results on the test set. 

 

Figure 3 provides a detailed 

confusion matrix of the classification 

results. The model shows strong precision 

in detecting anger, while sadness is 

sometimes misclassified as anger due to 

overlapping prosodic and visual cues. Joy 

occasionally overlaps with sadness, 

highlighting the difficulty of distinguishing 

between subdued positive affect and mild 

negative states. 

Neutral emotions show the greatest 

confusion, often being mistaken for joy or 

sadness depending on context. These 

misclassifications reinforce the importance 

of physiological sensing and contextual 

modeling, which help reduce overlap and 

improve recognition consistency. 

 

 

  


