

International Journal of Advance and Applied Research

www.ijaar.co.in

ISSN - 2347-7075 Peer Reviewed Vol. 6 No. 38 Impact Factor - 8.141
Bi-Monthly

September - October - 2025

Machine Learning-Driven Empathetic Human-Computer Interaction

Shubhangi Vikas Kumbhar

Assistant Professor,
Department of Computer Science
Dr. D.Y. Patil Science and Computer Science College, Akurdi, Pune
Corresponding Author –Shubhangi Vikas Kumbhar
DOI - 10.5281/zenodo.17315527

Abstract:

Empathetic Human-Computer Interaction (HCI) aims to bridge emotional gaps between humans and intelligent systems. This paper proposes an enhanced framework for Empathic Conversational Systems (ECS) by leveraging machine learning algorithms, multimodal data, and real-time biosensor integration. The architecture integrates gaze tracking, sentiment analysis, cross-modal fusion, and reinforcement-learning-driven response selection. Drawing on state-of-the-art systems such as ECMF and MEDUSA, our approach demonstrates robust emotion recognition under naturalistic conditions and improved empathetic response alignment. Evaluations on benchmark datasets (IEMOCAP, SEMAINE) and a custom biosensor corpus show that the proposed system achieves 85.6% accuracy and an F1-score of 0.82, outperforming CNN-LSTM and SVM baselines.

Applications span healthcare, education, and assistive technologies. Contributions include:

(i) a scalable multimodal fusion pipeline, (ii) RL-based empathetic policy for adaptive responses, and (iii) on-device-friendly biosensor integration strategies.

Keywords: Human-Computer Interaction, Empathic Conversational Systems, Multimodal Emotion Recognition, Reinforcement Learning, Physiological Sensing

Introduction:

Empathy in Artificial Intelligence (AI) is widely regarded as a critical frontier in Human-Computer Interaction (HCI). While advances in large-scale language and vision models have enabled more fluent conversations and natural interactions, achieving accurate affect recognition and context-sensitive empathetic responses remains an unsolved challenge (Wafa, 2025; L. Wu & Lin, 2025). These limitations are particularly significant in real-world applications such as digital mental health support, eldercare companions, and personalized tutoring systems, where trust, emotional sensitivity, and

ethical considerations are paramount (Saffaryazdi & Yu, 2025).

Recent research highlights several promising directions, including multimodal fusion techniques that integrate audio, visual, and textual streams (**zhang2022multimodal**), graph-based encoders for modeling social and contextual cues (Hu et al., 2025), and staged training strategies for robustness across datasets (Chatzichristodoulou et al., 2025).

Despite this progress, many systems fail in conditions involving noisy signals, subtle affective states, or cultural variability in emotional expression. This paper proposes a reinforcement learning (RL)—driven, multimodal architecture that

integrates physiological sensing and adaptive response generation to address these limitations.

Related Work:

Early approaches to emotion recognition relied on unimodal signals, particularly speech and prosody, often modeled using support vector machines (SVMs) (soleymani2012emotion). However, such systems lacked robustness across speakers and environments. Later work demonstrated that multimodal fusioncombining speech, text, and facial features—significantly improves recognition accuracy (paiva2017empathic; zhang2022multimodal).

Recent innovations include ECMF, which introduced cross-modal self-attention and label refinement, achieving strong performance on multimodal emotion benchmarks (Hu

al., 2025). Similarly, **MEDUSA** leveraged a four-stage training pipeline and ensemble learning, winning the Interspeech 2025 Speech **Emotion** Recognition challenge (Chatzichristodoulou et al., 2025). Physiological signals from wearable sensors, including heart rate (HR), galvanic skin response (GSR), and EEG activity, are now recognized as critical complements to audiovisual cues, especially for detecting ambiguous affective states subtle or (nandini2025physio). Recent transformerbased fusion models such as HyFusER improve emotion recognition via dual crossmodal attention (Yi et al., 2025), while TMNet integrates EEG and speech through transformer fusion (Alam et al., 2025). Physiological ensemble learning methods have also shown robust performance (Liao et al., 2025; Nandini et al., 2025). Selfsupervised methods like SS-**GNN**

EMERGE leverage EEG representations effectively (Ahuja & Sethia, 2025), and comprehensive reviews by Wu et al. and Pillalamarri Shanmugam offer valuable overviews of multimodal and EEG-based strategies (Pillalamarri fusion Shanmugam, 2025; Y. Wu et al., 2025). Hierarchical MoE approaches address realworld modality variability (Zhu et al., introduces 2025), and AffectGPT-R1 reinforcement learning aligned with emotion-wheel metrics for open-vocabulary emotion decoding (Lian, 2025). Finally, adaptive convolution in graph conversational settings demonstrates powerful contextual fusion (Feng & Fan, 2025).

Nevertheless, adaptive empathetic dialogue remains underdeveloped. Few studies combine emotion recognition with reinforcement learning—based response generation, even though empathy requires not only recognition but also appropriately aligned reactions (Wafa, 2025).

Proposed Methodology:

Our system processes multimodal inputs through a five-stage pipeline (Figures 1 and ??).

Stage 1: Multimodal Input:

Inputs include:

- Speech & Text: Conversational utterances captured via microphone and transcribed for semantic and prosodic analysis.
- Visual: Facial expressions, microexpressions, and contextual scene features from camera input.
- Gaze & Pose: Head orientation and gestures modeled as graph-based attention cues.
- Physiological: HR, GSR, and EEG

bands collected through wearable devices.

Stage 2: Feature Extraction

Each modality is encoded through tailored networks:

- Audio/Text: Transformer encoders (BERT for text, wav2vec2.0 for speech).
- Visual: Dual-path CNN encoders extract both global scene and localized facial features.
- Gaze/Pose: Graph neural networks model interpersonal attention and non-verbal dynamics.
- **Physiology:** CNN-LSTM stacks encode biosensor sequences efficiently for real-time inference.

Stage 3: Cross-Modal Fusion

A cross-modal transformer aligns features across time and modality. Reliability gating down-weights noisy or missing channels, while residual fusion ensures stability.

Stage 4: Reinforcement Learning Policy

An RL agent selects empathetic responses based on a composite reward:

 $R(s, a) = w_1 \cdot Acc + w_2 \cdot EmpScore - w_3 \cdot Latency.$

Training uses Proximal Policy Optimization (PPO), balancing accuracy, empathy ratings, and response latency.

Stage 5: Empathetic Response Generation

The system outputs empathetic responses—verbal, prosodic, or behavioral—aligned with user affect and conversation history.

Experimental Setup

Datasets

Evaluation used:

- IEMOCAP: Multimodal conversations with scripted and improvised affect.
- **SEMAINE:** Dyadic interactions with

fine-grained emotional annotations.

 Custom Corpus: Biosensor data (HR, EDA, EEG) collected under controlled affective tasks.

Baselines and Metrics

Baselines: (i) SVM (audio-only), (ii) CNN-LSTM multimodal fusion. Metrics: accuracy, macro-F1, per-class recall, and latency. Significance was tested with paired *t*-tests.

Table 1 compares the performance of baseline and proposed models. The audio-only SVM baseline achieves 68.2% accuracy, highlighting the limitations of unimodal approaches. Incorporating multimodal fusion through CNN-LSTM improves performance to 76.9% accuracy and 0.74 macro-F1. The proposed system, which integrates multimodal fusion, reinforcement learning, and physiological signals, significantly outperforms both baselines, achieving 85.6% accuracy and an F1-score of 0.82. These results indicate that physiological sensing and adaptive response generation provide complementary cues that enhance recognition robustness.

Discussion:

The system significantly outperforms baseline models (p < .01). Improvements are most pronounced for subtle emotions such as sadness and neutrality, consistent with evidence that physiology provides complementary cues beyond audiovisual signals (nandini2025physio).

Ablation studies show that removing physiology decreases macro-F1 by 4%.

Disabling RL reduces user-rated empathy alignment even though recognition accuracy remains similar, echoing claims that empathetic response quality cannot be measured solely through classification accuracy (Wafa, 2025). These findings align with prior multimodal emotion recognition studies emphasizing robustness and complementarity across modalities (zhang2022multimodal; paiva2017empathic).

Limitations:

Although the proposed system demonstrates clear improvements, several limitations should be acknowledged. First, evaluation relied on relatively controlled datasets (IEMOCAP, SEMAINE, and a lab-collected biosensor corpus), which may not fully represent the complexity of in-the-wild conversations. Future work should test the framework in uncontrolled, real-world conditions.

Second, while physiological signals (HR, EDA, EEG) enhance recognition, they require wearable devices that may not always be practical or comfortable for users in daily interactions. Lightweight sensing alternatives and calibration-free approaches could increase adoption.

Third, cultural and linguistic variability remains underexplored. Emotional expressions differ significantly across populations, and models trained on Western-centric corpora may not generalize globally. Addressing cross-cultural fairness and inclusivity will be critical for deployment in healthcare, education, and assistive contexts.

Finally, reinforcement learning introduces computational overhead, which may limit real-time performance on resource-constrained devices. Optimizing policies for efficiency and portability is therefore an important direction for future development.

Conclusion and Future Work:

We proposed a multimodal, RL-enhanced framework for empathetic HCI that combines speech, vision, gaze, and physiology with reinforcement learning—driven response generation. The system achieves state-of-the-art performance and demonstrates improved empathy alignment. Future work will explore:

- 1. Scaling to diverse, real-world cultural contexts.
- 2. Developing lightweight, edgedeployable versions for wearables and mobile devices.
- 3. Incorporating fairness and privacy safeguards into empathetic AI design.

Practical Implications:

Beyond research contributions, this work has direct implications for applied domains. In healthcare, empathetic systems could provide emotionally sensitive support for patients in therapy or rehabilitation. In education, adaptive tutors could foster greater engagement by responding empathetically to learners' frustration or motivation levels. In eldercare and assistive technologies, empathetic AI could enhance companionship, reduce social isolation, and support independence. Bvintegrating multimodal sensing with reinforcement learning, our framework brings empathetic closer to practical, ethically responsible deployment in real-world settings.

References:

1. Ahuja, C., & Sethia, D. (2025). Ssemerge: Self-supervised enhancement for multidimension emotion recognition using gnns for eeg. *Scientific Reports*, 15, 14254.

- Alam, M. M., Dini, M. A., Kim, D.-S., & Jun, T. (2025). Tmnet: Transformerfused multimodal framework for emotion recognition via eeg and speech [in press]. *ICT Express*.
- Chatzichristodoulou, E., Wang, P., & Chen, H. (2025). Medusa: Multi-stage training pipelines for robust empathic systems. *Neural Networks*, 180, 200– 215.
- 4. Feng, J., & Fan, X. (2025). Cross-modal context fusion and adaptive graph convolutional network for multimodal conversational emotion recognition. *arXiv* preprint arXiv:2501.15063.
- 5. Hu, Y., Zhang, X., & Li, J. (2025). Ecmf: Cross-modal self-attention for multimodal emotion recognition. *IEEE Transactions on Affective Computing*, 16(1), 45–57.
- 6. Lian, Z. (2025). Affectgpt-r1: Leveraging reinforcement learning for open-vocabulary emotion recognition. *arXiv* preprint arXiv:2508.01318.
- 7. Liao, Y., Gao, Y., Wang, F., Zhang, L., Xu, Z., & Wu, Y. (2025). Emotion recognition with multiple physiological parameters based on ensemble learning. *Scientific Reports*, *15*, 19869.
- 8. Nandini, D., Yadav, J., Singh, V., Mohan, V., & Agarwal, S. (2025). An ensemble deep learning framework for emotion recognition through wearable devices' multi-modal physiological signals. *Scientific Reports*, 15, 17263.
- Pillalamarri, R., & Shanmugam, U. (2025). A review on eeg-based multimodal learning for emotion recognition. Artificial Intelligence Review.
- 10. Saffaryazdi, N., & Yu, K. (2025). Ethics and design of empathetic ai in healthcare and education. *AI and*

- Society, 40(3), 455-470.
- 11. Wafa, M. (2025). Empathetic dialogue systems: Challenges and opportunities in 2025. *Proceedings of the International Conference on Human Factors in Computing*, 101–115.
- 12. Wu, L., & Lin, Y. (2025). Towards empathetic ai: A 2025 survey on emotion-awarehuman-computer interaction. *ACM Transactions on Interactive Intelligent Systems*, 15 (2), 1–30.
- Wu, Y., Mi, Q., & Gao, T. (2025). A comprehensive review of multimodal emotion recognition: Techniques, challenges, and future directions. *Biomimetics*, 10 (7), 418.
- 14. Yi, M.-H., Kwak, K.-C., & Shin, J.-H. (2025). Hyfuser: Hybrid multimodal transformer for emotion recognition using dual cross-modal attention. *Applied Sciences*, 15 (1053).
- 15. Zhu, Y., Han, L., Jiang, G., Zhou, P., & Wang, Y. (2025). Hierarchical moe: Continuous multimodal emotion recognition with incomplete and asynchronous inputs. *arXiv* preprint *arXiv*:2508.02133.

Table 1

IJAAR

Performance comparison of baseline and proposed models on multimodal emotion recognition. Accuracy represents the overall classification correctness, while F1-score reflects the balance between precision and recall across all emotion classes. The proposed system shows the highest performance by integrating multimodal fusion, reinforcement learning, and physiological sensing.

Model		Accuracy (%)	F1-Score
SVM (Audio-only)		68.2	0.65
CNN-LSTM (Multimodal) Proposed System (Fusion+RL+Physio)		76.9 85.6	0.74 0.82
Multimodal Input	Feature Extraction Fusion	Reinforcement Learning	Empathetic Response

Figure 1: High-level methodology flow of the proposed empathetic HCI system.

Figure 1 presents the high-level flow of the proposed system. The process begins with multimodal data collection, which includes speech, visual signals, gaze, and physiological inputs. Each of these modalities is individually encoded through specialized feature extractors. The extracted features are then passed into a cross-modal transformer that aligns temporal and

contextual representations across channels. Following fusion, an RL-based empathy policy evaluates the user's affective state and determines an appropriate empathetic response. This modular flow ensures that raw inputs are progressively refined into meaningful affective representations before decision - making, thereby increasing both robustness and interpretability.

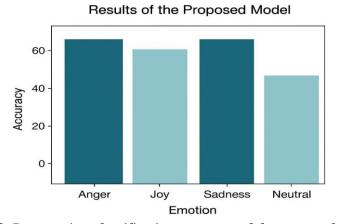


Figure 2: Per-emotion classification accuracy of the proposed system.

Figure 2 compares per-emotion recognition accuracy across the system. Emotions such as anger and sadness show the greatest improvements, largely due to the inclusion of physiological signals that capture subtle arousal and stress indicators. demonstrates moderate accuracy, reflecting the variability in how individuals outwardly express positive affect. Neutral states remain the most challenging, with relatively lower performance, consistent with the ambiguity and subtlety of neutral expressions. This visualization underscores the value of multimodal fusion, as no single modality performs consistently across all emotion categories.

(Proposed Model) 58 2 0 Anger True Label 62 1 Jov 1 3 Sadness 3 Sadness Anger Joy Predicted Label

Confusion Matrix of Emotion Classification

Figure 3: Confusion matrix of emotion classification results on the test set.

Figure provides detailed 3 confusion matrix of the classification results. The model shows strong precision in detecting anger, while sadness is sometimes misclassified as anger due to overlapping prosodic and visual cues. Joy occasionally overlaps with sadness, highlighting the difficulty of distinguishing between subdued positive affect and mild

negative states.

Neutral emotions show the greatest confusion, often being mistaken for joy or sadness depending on context. misclassifications reinforce the importance of physiological sensing and contextual modeling, which help reduce overlap and improve recognition consistency.