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Abstract:

Empathetic Human-Computer Interaction (HCI) aims to bridge emotional gaps between
humans and intelligent systems. This paper proposes an enhanced framework for Empathic
Conversational Systems (ECS) by leveraging machine learning algorithms, multimodal data, and real-
time biosensor integration. The architecture integrates gaze tracking, sentiment analysis, cross-modal
fusion, and reinforcement-learning-driven response selection. Drawing on state-of-the-art systems such
as ECMF and MEDUSA, our approach demonstrates robust emotion recognition under naturalistic
conditions and improved empathetic response alignment. Evaluations on benchmark datasets
(IEMOCAP, SEMAINE) and a custom biosensor corpus show that the proposed system achieves 85.6%
accuracy and an F1-score of 0.82, outperforming CNN-LSTM and SVM baselines.

Applications span healthcare, education, and assistive technologies. Contributions include:

(i) a scalable multimodal fusion pipeline, (ii) RL-based empathetic policy for adaptive responses, and
(iif) on-device-friendly biosensor integration strategies.

Keywords: Human-Computer Interaction, Empathic Conversational Systems, Multimodal Emotion
Recognition, Reinforcement Learning, Physiological Sensing

Introduction: ethical considerations are paramount

Empathy in Artificial Intelligence
(Al) is widely regarded as a critical frontier
in  Human-Computer Interaction (HCI).
While advances in large-scale language and
vision models have enabled more fluent
conversations and natural interactions,
achieving accurate affect recognition and
context-sensitive  empathetic  responses
remains an unsolved challenge (Wafa,
2025; L. Wu & Lin, 2025). These
limitations are particularly significant in
real-world applications such as digital
mental health support, eldercare
companions, and personalized tutoring
systems, where trust, emotional sensitivity,
and

(Saffaryazdi & Yu, 2025).

Recent research highlights several
promising directions, including multimodal
fusion techniques that integrate audio,
visual, and textual streams
(zhang2022multimodal),
encoders for modeling social and contextual
cues (Hu et al., 2025), and staged training
strategies for robustness across datasets
(Chatzichristodoulou et al., 2025).

Despite this progress, many systems

graph-based

fail in conditions involving noisy signals,
subtle affective states, or cultural variability
in  emotional expression. This paper
proposes a reinforcement learning (RL)—
driven, multimodal architecture that
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integrates  physiological sensing and
adaptive response generation to address
these limitations.

Related Work:

Early approaches to emotion
recognition relied on unimodal signals,
particularly speech and prosody, often
modeled using support vector machines
(SVMs) (soleymani2012emotion). However,
such systems lacked robustness across
speakers and environments. Later work
demonstrated that multimodal fusion—
combining speech, text, and facial
features—significantly improves recognition
accuracy (paiva2017empathic;
zhang2022multimodal).

Recent innovations include ECMF,
which introduced cross-modal self-attention
and label refinement, achieving strong
performance on multimodal emotion
benchmarks (Hu
et al, 2025). Similarlyy, MEDUSA
leveraged a four-stage training pipeline and
ensemble learning, winning the Interspeech
2025 Speech  Emotion  Recognition
challenge (Chatzichristodoulou et al., 2025).
Physiological signals from  wearable
sensors, including heart rate (HR), galvanic
skin response (GSR), and EEG activity, are
now recognized as critical complements to
audiovisual cues, especially for detecting
subtle or ambiguous affective states
(nandini2025physio). Recent transformer-
based fusion models such as HyFusER
improve emotion recognition via dual cross-
modal attention (Yi et al., 2025), while
TMNet integrates EEG and speech through
transformer fusion (Alam et al., 2025).
Physiological ensemble learning methods
have also shown robust performance (Liao
et al., 2025; Nandini et al., 2025). Self-
supervised GNN methods like SS-
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EMERGE leverage EEG representations
effectively (Ahuja & Sethia, 2025), and
comprehensive reviews by Wu et al. and
Pillalamarri  Shanmugam offer valuable
overviews of multimodal and EEG-based
fusion strategies (Pillalamarri &
Shanmugam, 2025; Y. Wu et al., 2025).
Hierarchical MoE approaches address real-
world modality variability (Zhu et al.,,
2025), and AffectGPT-R1 introduces
reinforcement  learning  aligned  with
emotion-wheel metrics for open-vocabulary
emotion decoding (Lian, 2025). Finally,
adaptive graph convolution in
conversational settings demonstrates
powerful contextual fusion (Feng & Fan,
2025).

Nevertheless, adaptive empathetic
dialogue remains underdeveloped. Few
studies combine emotion recognition with
reinforcement  learning—based response
generation, even though empathy requires
not only recognition but also appropriately
aligned reactions (Wafa, 2025).

Proposed Methodology:

Our system processes multimodal
inputs through a five-stage pipeline (Figures
1and ??).

Stage 1: Multimodal Input:
Inputs include:
= Speech & Text: Conversational
utterances captured via microphone
and
transcribed for semantic and prosodic
analysis.
= Visual: Facial expressions, micro-
expressions, and contextual scene
features from camera input.
= Gaze & Pose: Head orientation and
gestures modeled as graph-based
attention cues.
= Physiological: HR, GSR, and EEG
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bands collected through wearable
devices.
Stage 2: Feature Extraction
Each modality is encoded through tailored
networks:
= Audio/Text: Transformer encoders
(BERT for text, wav2vec2.0 for
speech).
= Visual: Dual-path CNN encoders
extract both global scene and
localized facial features.
= Gaze/Pose: Graph neural networks
model interpersonal attention and
non-verbal dynamics.
= Physiology: CNN-LSTM  stacks
encode biosensor sequences efficiently
for real-time inference.
Stage 3: Cross-Modal Fusion
A cross-modal transformer aligns
features across time and modality.
Reliability gating down-weights noisy or
missing channels, while residual fusion
ensures stability.
Stage 4: Reinforcement Learning Policy
An RL agent selects empathetic
responses based on a composite reward:
R(s, a) = w; - Acc + w, - EmpScore — wj -
Latency.
Training uses Proximal Policy Optimization
(PPO), balancing accuracy, empathy
ratings, and response latency.
Stage 5: Empathetic Response Generation
The system outputs empathetic
responses—verbal, prosodic, or
behavioral—aligned with user affect and
conversation history.
Experimental Setup
Datasets
Evaluation used:
= |IEMOCAP: Multimodal
conversations with scripted and
improvised affect.
= SEMAINE: Dyadic interactions with
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fine-grained emotional annotations.
= Custom Corpus: Biosensor data
(HR, EDA, EEG) collected under
controlled affective tasks.
Baselines and Metrics

Baselines: (i) SVM (audio-only), (ii)
CNN-LSTM multimodal fusion. Metrics:
accuracy, macro-F1, per-class recall, and
latency. Significance was tested with paired
t-tests.

Table 1 compares the performance
of baseline and proposed models. The
audio-only SVM baseline achieves 68.2%
accuracy, highlighting the limitations of
unimodal approaches. Incorporating
multimodal fusion through CNN-LSTM
improves performance to 76.9% accuracy
and 0.74 macro-F1. The proposed system,
which integrates multimodal  fusion,
reinforcement learning, and physiological
signals, significantly outperforms both
baselines, achieving 85.6% accuracy and an
F1-score of 0.82. These results indicate that
physiological sensing and adaptive response
generation provide complementary cues that
enhance recognition robustness.

Discussion:

The system significantly
outperforms baseline models (p < .01).
Improvements are most pronounced for
subtle emotions such as sadness and
neutrality, consistent with evidence that
physiology provides complementary cues
beyond audiovisual signals
(nandini2025physio).

Ablation  studies show  that
removing physiology decreases macro-F1
by 4%.

Disabling RL reduces user-rated
empathy alignment even though recognition
accuracy remains similar, echoing claims
that empathetic response quality cannot be
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measured solely through classification
accuracy (Wafa, 2025). These findings
align  with prior multimodal emotion
recognition studies emphasizing robustness
and complementarity across modalities
(zhang2022multimodal; paiva2017empathic).

Limitations:

Although the proposed system
demonstrates clear improvements, several
limitations should be acknowledged. First,
evaluation relied on relatively controlled
datasets (IEMOCAP, SEMAINE, and a lab-
collected biosensor corpus), which may not
fully represent the complexity of in-the-wild
conversations. Future work should test the
framework in uncontrolled, real-world
conditions.

Second, while physiological signals
(HR, EDA, EEG) enhance recognition, they
require wearable devices that may not
always be practical or comfortable for users
in daily interactions. Lightweight sensing
alternatives and calibration-free approaches
could increase adoption.

Third, cultural and linguistic
variability remains underexplored.
Emotional expressions differ significantly
across populations, and models trained on
Western-centric corpora may not generalize
globally. Addressing cross-cultural fairness
and inclusivity will be critical for
deployment in healthcare, education, and
assistive contexts.

Finally, reinforcement learning
introduces computational overhead, which
may limit real-time performance on
resource-constrained devices. Optimizing
policies for efficiency and portability is
therefore an important direction for future
development.
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Conclusion and Future Work:

We proposed a multimodal, RL-
enhanced framework for empathetic HCI
that combines speech, vision, gaze, and
physiology with reinforcement learning—
driven response generation. The system
achieves state-of-the-art performance and
demonstrates improved empathy alignment.
Future work will explore:

1. Scaling to diverse, real-world cultural
contexts.

2. Developing lightweight, edge-
deployable versions for wearables and
mobile devices.

3. Incorporating fairness and privacy
safeguards into empathetic Al design.

Practical Implications:

Beyond research contributions, this
work has direct implications for applied
domains. In healthcare, empathetic systems
could provide emotionally sensitive support
for patients in therapy or rehabilitation. In
education, adaptive tutors could foster
greater  engagement by  responding
empathetically to learners’ frustration or
motivation levels. In eldercare and assistive
technologies, empathetic Al could enhance
companionship, reduce social isolation, and
support independence. By integrating
multimodal sensing with reinforcement
learning, our framework brings empathetic
HCI closer to practical, ethically
responsible  deployment in real-world
settings.
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Performance comparison of baseline and proposed models on multimodal emotion
recognition. Accuracy represents the overall classification correctness, while F1-score reflects the
balance between precision and recall across all emotion classes. The proposed system shows the
highest performance by integrating multimodal fusion, reinforcement learning, and physiological

sensing.

Model Accuracy (%) F1-Score
SVM (Audio-only) 68.2 0.65
CNN-LSTM (Multimodal) 76.9 0.74
Proposed System (Fusion+RL+Physio) 85.6 0.82
gt |t || v || pigme || spe

Figure 1: High-level methodology flow of the proposed empathetic HCI system.

Figure 1 presents the high-level
flow of the proposed system. The process
begins with multimodal data collection,
which includes speech, visual signals, gaze,
and physiological inputs. Each of these
modalities is individually encoded through
specialized feature extractors. The extracted
features are then passed into a cross-modal
transformer that aligns temporal and

contextual representations across channels.
Following fusion, an RL-based empathy
policy evaluates the user’s affective state
and determines an appropriate empathetic
response. This modular flow ensures that
raw inputs are progressively refined into
meaningful affective representations before
decision - making, thereby increasing both
robustness and interpretability.

Results of the Proposed Model

Accuracy
N H
o o

Anger

Joy

Sadness Neutral

Emotion

Figure 2: Per-emotion classification accuracy of the proposed system.
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Figure 2 compares per-emotion
recognition accuracy across the system.
Emotions such as anger and sadness show
the greatest improvements, largely due to
the inclusion of physiological signals that
capture subtle arousal and stress indicators.
Joy demonstrates moderate accuracy,
reflecting the variability in how individuals
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outwardly express positive affect. Neutral
states remain the most challenging, with
relatively lower performance, consistent
with the ambiguity and subtlety of neutral
expressions. This visualization underscores
the value of multimodal fusion, as no single
modality performs consistently across all

emotion categories.

Confusion Matrix of Emotion Classification
(Proposed Model)
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©
o Joy 1
-
Q
=
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Anger Joy Sadness
Predicted Label

Figure 3: Confusion matrix of emotion classification results on the test set.

detailed
the classification
results. The model shows strong precision
in detecting anger,

Figure
confusion

3 provides a
matrix of

sadness s
sometimes misclassified as anger due to
overlapping prosodic and visual cues. Joy
occasionally with  sadness,
highlighting the difficulty of distinguishing
between subdued positive affect and mild

while

overlaps
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negative states.

Neutral emotions show the greatest
confusion, often being mistaken for joy or
sadness depending on context. These
misclassifications reinforce the importance
of physiological sensing and contextual
modeling, which help reduce overlap and
improve recognition consistency.
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