

A Comparative Study On Tools Used For Generative AI

Dr. Manjusha Yuvraj Patil¹ & Ms. Kavita Joshi²

¹Computer Science Department,

ATSS College of Business Studies and Computer Application, Chinchwad, Pune-19

²Computer Science Department,

ATSS College of Business Studies and Computer Application, Chinchwad, Pune-19

Corresponding Author – Dr. Manjusha Yuvraj Patil

DOI - 10.5281/zenodo.18015069

Abstract:

One of the most revolutionary technologies of the modern era is generative artificial intelligence (AI), which has developed quickly. High-quality text, images, audio, video, and synthetic data that mimic human-generated content can now be produced by generative AI systems thanks to developments in machine learning and deep learning. These tools enable increased creativity, automation, and efficiency across industries while drastically cutting the time and expense involved in content production. This paper compares twenty well-known generative AI tools, including GPT-4, ChatGPT, AlphaCode, GitHub Copilot, Bard/Gemini, Cohere Generate, Claude, and Synthesia, among others. Important characteristics of each tool are analyzed, including features, use cases, benefits, company origin, and accessibility. Additionally, the study emphasizes the technical underpinnings of generative AI, specifically GANs, VAEs, and autoregressive transformer models. The significance of generative AI in influencing global productivity, innovation, and the future of human-machine collaboration is discussed in the paper's conclusion, which also covers a wide range of applications across industries.

Introduction:

One of the most revolutionary developments in contemporary computer science is generative artificial intelligence, or generative AI. It describes a class of AI models that can mimic patterns discovered from large amounts of training data to produce new content, including text, images, audio, video, software code, and even synthetic datasets. Generative AI systems produce new outputs that allow machines to think and react in ways that closely resemble human creativity and intelligence, in contrast to traditional AI systems that are mainly

concerned with classification, prediction, or rule-based automation.

One of the first chatbots that could mimic human speech, ELIZA, was introduced by Joseph Weizenbaum in the 1960s, which is where generative AI got its start. Early systems were constrained by computation power and crude algorithms, despite being revolutionary at the time. Before Ian Goodfellow and his associates introduced Generative Adversarial Networks (GANs) in 2014, the field made slow progress. The modern generative AI revolution began when GANs showed that

machines could produce incredibly lifelike synthetic images and audio for the first time.

Since then, the development of generative models has accelerated due to developments in transformer architectures, deep learning, and the availability of large amounts of data. The capabilities of machines have been redefined by technologies such as OpenAI's GPT models, Google's PaLM, Meta's Llama, Midjourney, Stable Diffusion, and numerous multimodal AI systems. These models can recognize patterns, comprehend semantic relationships, and generate responses or creations that are remarkably coherent and fluid because they have been trained on billions of parameters.

Healthcare, finance, marketing, cybersecurity, education, entertainment, software development, and scientific research are just a few of the sectors where generative AI is now widely used. By producing draft content, summarizing complex information, and providing individualized solutions, it automates tedious tasks, facilitates decision-making, and fosters creativity. It drives virtual assistants, fraud detection, customer service automation, and real-time user experience personalization in business settings. It is utilized in scientific fields for large-scale dataset analysis, chemical reaction simulation, and the design of new molecules.

Teaching AI to create content involves adjusting countless parameters in neural networks. This happens through learning without supervision, with guidance, or by trial and error. To make the model fit specific fields, experts feed it specialized information. This helps the AI tackle tasks like spotting health issues, reviewing legal papers, forecasting weather, or writing

computer code. As the process goes on, these systems get better at being accurate understanding context, and meeting what people expect from them.

Generative AI has a huge effect on the economy. Goldman Sachs released a study showing it could boost global GDP by 7%, which equals about \$7 trillion. It might also increase productivity growth by 1.5 percentage points in the next ten years. These numbers highlight how generative AI can change not just technology, but the world's economy too.

In general, generative AI is changing how people use technology. It lets machines create new, useful, and smart content. As scientists learn more generative AI will become a bigger part of daily life. It will get better at working with different types of data and might open up new ways to be creative that humans haven't thought of yet.

How does Generative AI Work:

Generative AI works through cutting-edge machine learning and deep learning algorithms. These algorithms train on huge datasets with text, images, audio, code, or other data types. They learn the basic patterns, structures, and relationships in the data. After training, the system can create new and original content that looks like the patterns it learned, without just copying the training data. Generative AI models use neural network designs like Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) autoregressive transformer models, and diffusion models. Each of these helps the generation process in a different way. These models use probability distributions, optimization methods, and repeated training

to make coherent, realistic, and high-quality content.

1. GANs (Generative Adversarial Networks):

Generative Adversarial Networks, developed by Ian Goodfellow in 2014, are among the most impressive developments in generative modeling. GANs involve two neural networks competing against one another:

- Generator: The generator in question creates synthetic data that resembles real data.
- Discriminator: It checks data input and decides whether it is real-from the dataset, or fake-generated.

During training, the generator tries to 'fool' the discriminator by producing more realistic output, while the discriminator tries to get better and better at telling the difference between real and generated data. The process then becomes adversarial in nature until the generator learns to generate highly plausible realistic content.

Applications of GANs:

- High-resolution image generation
- Deepfake creation
- Video synthesis and animation
- Image-to-image translation-sketch → photo, night → day
- Super-resolution : enhancing image quality
- Creating synthetic medical images for training AI models

GANs work extremely well in tasks where creativity, photorealism, and controlled image transformation are needed.

2. VAEs (Variational Autoencoders):

Variational Autoencoders represent another important generative model widely

used in deep learning. VAEs operate on an encoder-decoder architecture:

- The encoder compresses the input data to a latent vector representation.
- The decoder reconstructs new content by sampling from this latent space.

What does uniquely characterize VAEs is the usage of probabilistic distributions. They do not just compress and decompress data; instead, they learn to represent data in terms of probability, hence allowing more diverse and coherent generation.

Key Features of VAEs:

- Smooth and continuous latent space
- Ability to interpolate between different inputs, e.g., blend two faces
- Support for various architectures: from CNNs and RNNs to Transformers

Applications of VAEs:

- Text generation and language modeling
- Image synthesis and reconstruction
- Anomaly Detection
- Music and audio generation
- Drug molecule generation and chemical design

VAEs are often preferred for applications in which one wants to generate structured, smooth variations in data, rather than necessarily photorealistic outputs.

3. Autoregressive Models (Transformer-based Models):

Modern natural language processing and content generation tasks are dominated by autoregressive models. A few examples are GPT, which stands for Generative Pretrained Transformer; LLaMA; PaLM; and other transformer-based architectures.

An autoregressive model predicts a token in the sequence by analysing tokens previously generated. This will help the system sustain context, coherence, and logical sequence of the generated content.

How they work:

- They employ transformer architectures with self-attention mechanisms.
- They are trained on large text corpora to learn grammar, semantics, and world knowledge.
- They can generate, summarize, translate, classify, and reason using natural language prompts.

Applications of Autoregressive Models:

- Chatbots and Conversational AI, including ChatGPT
- Text summarization and translation
- Report, essay, and email generation
- Code generation, including GitHub Copilot
- Logical reasoning and question-answering
- Multimodal tasks like image captioning and video summarisation

Autoregressive transformer models currently represent the state-of-the-art approach in generative AI because of their scalability, versatility, and ability to handle multiple modalities.

Literature Review:

Early foundational research in the field of NLP began in the 1950s, when computational linguists first sought to answer the question of whether machines could understand and process human language [14]. This early work laid the groundwork for modern generative AI systems by introducing rule-based parsing,

attempts at machine translation, and even concepts of artificial linguistic intelligence.

Singh and Thakur [15] carried out a broad survey on architectures used by chatbots: rule-based, retrieval-based, and AI-driven. They have pointed out that modern AI-based chatbots drastically improve efficiency in human-computer interactions through reducing repetitive manual work and automating communication across business domains.

Deshpande and Chandak [16] discussed various chatbot building tools like Rasa, Dialogflow, Microsoft Bot Framework, and IBM Watson. The research indicated the fast growth of chatbot building systems and how they can, and will be, widely used in customer service, virtual assistance, and automated support systems by both technical and nontechnical users.

Ahmed et al. [17] present a comparative analysis of ChatGPT and Google Bard concerning linguistic fluency, accuracy, contextual understanding, and capability of content generation. The findings from their study revealed that ChatGPT clearly outperforms Bard in the development of coherent text, rich in detail and grammatically correct, and therefore is more applicable in academic and professional settings.

Kiryakova and Angelova [18] explored the use of ChatGPT in higher education, particularly how university instructors use AI tools to generate lesson plans, summaries, quizzes, and teaching materials. They also pointed out a major concern: excessive student dependence on ChatGPT, which can reduce critical thinking and result in unverified acceptance of AI-generated content.

Singh et al. [19] explored the use of ChatGPT in medical research and clinical documentation. According to their observations, ChatGPT may be useful for literature reviews, summaries of research, and drafting manuscripts, provided it is carefully supervised by experts to avoid introducing wrong or fabricated information.

Huang et al. (2023) explored the use of GANs in medical imaging, and their findings indicated that synthetic images from GANs could help increase the quality and size of training datasets. Their findings demonstrated that generative AI improved diagnostic model accuracy and also supported safer experimentation without risking real patient data.

Ramachandran and Kapoor (2024) investigated the impact of generative AI on business decision-making and enterprise intelligence. They concluded that AI-powered tools substantially improve report generation, scenario analysis, and automated documentation, but transparency and explainability remain major concerns for organizational-wide adoption.

Patel and Soni, 2023, assessed the role of generative AI in financial analytics, such as fraud detection, risk assessment, and document processing. They noticed that generative AI models provide speedier analysis, improved anomaly detection, and effective summarization of data for better decision-making in financial institutions.

Kowalski et al. (2023) examined generative AI risks such as misinformation, hallucinations, and propagation of bias. They emphasized that it requires a regulatory framework, mechanisms for accuracy assessment, and mitigation

strategies to make sure the AI-generated content is reliable and trustworthy.

Liu and Park (2023) analysed the environmental impact of training large-scale generative models like GPT and PaLM. Large-scale generative models are extremely computationally and power-intensive, showing that there is a need to develop more energy-efficient AI architectures.

Gomez and Hernandez, 2024, investigated generative AI performance in multilingual environments. Their findings indicated substantial differences in accuracy between English and non-English languages due to a lack of diversity in training data; therefore, there is a need to revisit culturally inclusive datasets for the improvement of multilingual AI.

Methodology:

- Five distinctive criteria have been used in the selection of AI tools for this study.
- The year they were released, Known For, Use Case, Origination Date, Free/Open Source.

Generative Applications:

Generative AI applications and tools come up with original content, based on the training they have received from huge AI models, datasets, and neural networks.

Generative AI tools can assist developers in creating new content including, but not limited to, characters, environments, text effects, product descriptions, emails, and layouts.

Applications by Industry for Generative AI:

Companies in various fields are currently employing generative AI in different ways. Some of the applications currently used across several fields include:

- Healthcare

- Marketing
- Sales
- Education
- Customer service, etc.
- Climate science and meteorology
- Government
- Software development

Tools of Generative AI:

Below are discussed the tools used in Generative AI:

Sr. No	Tool	Company	Known For	Use Case	Free / Open Source	Origination Date
1	ChatGPT	OpenAI	Best LLM and Content Generation Ecosystem	LLM (Large Language Model)	Free	30 November 2022
2	Microsoft Copilot	Microsoft	General Business Use	Embedded AI	Free	21 September 2023
3	Gemini (Formerly Bard)	Google (Alphabet)	Real-Time Online Resources and Connectivity	LLM, Chatbot	Free	21 March 2023
4	GitHub Copilot	Microsoft / GitHub / OpenAI	Coding Quality Assurance	Code Generation	Paid	29 October 2021
5	Claude	Anthropic	Ethical and Secure Business	LLM, Chatbot	Free	March 2023
6	Cohere Generate	Cohere	Straightforward API Integration	LLM, Business AI	Playground: Free Input: Paid	2019
7	Synthesia	Synthesia	AI-Powered Video Creation and Avatars	Video Creation, AI Avatar Generation	Paid	2017
8	DALL-E 3	OpenAI	Accessible Image Generation	Image and Art Generation	Paid	September 2023
9	Midjourney	Midjourney	AI Image Editing and Generation	Image and Art Generation	Paid	July 12, 2022
10	Jasper	Jasper AI	Digital Marketing Content Generation	AI-Driven	Paid	February 2021

The following comparison chart contrasts the top 10 leading generative AI

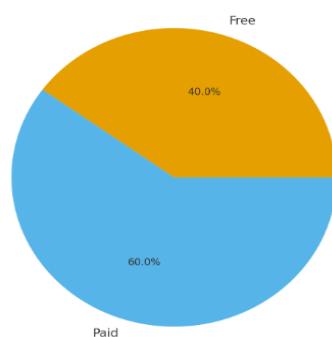
apps and tools. There are also other applications to discuss.

Sr. No	Tool	Company	Known For	Use Case	Starting Price	Origination Date
1	Pi	Inflection AI	casual, supportive, and personalized conversations	LLM	Free	May 2023
2	Llama 2	Microsoft, Meta	consumer-grade hardware	LLM	Free	July 18, 2023,
3	BLOOM	Bloom AI	text completion	ALLM	Free	2021
4	Glean	Glean	Pull information from most-used applications without interruption.	generative AI solution	Paid	April 2023
5	Notion AI	Notion Labs	succinct responses	Project management and productivity platform Notion	Free	November 2022.
6	AI21 Studio	AI21 Labs	enterprise-ready API	AI Text Model Development	Paid	August 2021
7	Tabnine	Tabnine	Context-aware suggestions, accelerate coding workflows	AI-powered code	Free	March 2019.
8	AlphaCode 2	DeepMind, Gemini Pro	problem-solving and coding solutions	Gemini LLM	Not yet available for public use	2022
9	Adobe Firefly	Adobe Creative Cloud	focuses on image generation and editing for both photos and artistic projects	Creative Content Generation	Free and Premium	June 22, 2023
10	Stable Diffusion XL	Stability AI	Create higher-quality images that are truly photorealistic	AI image generation model	Free and paid	2022

Generative AI applications and tools can accomplish a wide range of project necessities and tasks for professional and personal purposes alike.

Comparative Analysis of Generative AI Tools:

The top 10 selected tools were then categorized by pricing structure-either as Free/Open-Source or Paid/Commercial models-to better understand the accessibility and adoption of Generative AI tools. Such a categorization would indicate how easily such technologies can be adopted by students, researchers, developers, and small organizations.


This study classified 4 tools as Free/Open Source: ChatGPT, Microsoft Copilot, Gemini, and Claude; and 6 tools as Paid or Premium: GitHub Copilot, Synthesia, DALL-E 3, Midjourney, Jasper, and Cohere-Input Paid.

This distribution underlines that, while Generative AI is largely expanding, high-performance tools remain behind paywalls, thus creating a barrier to wider adoption in low-budget educational or research settings.

Distribution of Free vs Paid Generative AI Tools:

The figure below visually represents the proportion of *Free / Open-Source* tools versus *Paid* tools in the study.

- ✓ Free/Open Source: 40%
- ✓ Paid: 60%

Fig. Distribution of Free vs Paid Generative AI Tools

It thus becomes explicit that paid tools hold strong positions in the generative AI ecosystem, providing either specialized or enterprise-level features, while free tools are mostly supporting general-purpose use cases such as text generation or conversational interfaces.

Pie Chart Interpretation: This pie chart indicates that 60% of the tools are paid, reflecting the commercial nature of advanced generative AI ecosystems. Most paid tools do offer more processing power, premium options of customization, and enterprise-level integrations. On the other hand, 40% of the tools are free, thus allowing for broad accessibility among students, small organizations, and independent developers. Hence, this distribution suggests that though generative AI is getting democratized, full-scale adoption requires investment in premium platforms, at least for specialized applications. The visualization emphasizes the requirement for more open-source alternatives to ensure equal technological participation across sectors.

Conclusion:

In the final analysis, Generative AI has emerged as a powerhouse in the realm of technology for the creation and innovation of content across many sectors.

The most common usage of Generative AI these days is creating content in response to requests in natural language. There is no need to learn or enter code.

Refers to models that generate new content, or data, like the data they have trained on; hence, demands a lot.

Many of the tools are available for the purpose of generative AI; it will be easy

and efficient to use. Each of these tools varies according to its demand and use, so it has its prominent value.

References:

1. Deshpande, B., & Chandak, M. B. (2022). A survey of designing tools for chatbot application. *International Journal of Health Sciences*, 6(S5), 1403–1413. <https://doi.org/10.53730/ijhs.v6nS5.8889>
2. Ahmed, I., Kajol, M. A., Hasan, U., Datta, P. P., Roy, A., & Reza, M. R. (2024). ChatGPT versus Bard: A comparative study. *Engineering Reports*. <https://doi.org/10.1002/eng2.12890>
3. Patil, N. S., Khan, L., & others. (2024). Comparative performance of ChatGPT and Bard in a text-based radiology knowledge assessment.
4. Chen, Y., Huang, X., Yang, F., Lin, H., Lin, H., Zheng, Z., ... Li, X. (2024). Performance of ChatGPT and Bard on the medical licensing examinations across different cultures: a comparison study. *BMC Medical Education*.
5. López Espejel, J., Ettifouri, E. H., Yahaya Alassan, M. S., Chouham, E. M., & Dahhane, W. (2023). GPT-3.5, GPT-4, or BARD? Evaluating LLMs reasoning ability in zero-shot setting and performance boosting through prompts. *arXiv*.
6. Klimczak, J., & Hamed, A. A. (2024). Quantifying similarity: Text-mining approaches to evaluate ChatGPT and Google Bard content in relation to biomedical literature.
7. Wei, Q., Yao, Z., Cui, Y., Wei, B., Jin, Z., & Xu, X. (2023). Evaluation of ChatGPT-Generated Medical Responses: A Systematic Review and Meta-Analysis..
8. Suryanto, T. L. M., & others. (2023). A review of chatbots and implications in natural language processing. *International Journal of Research in Computer Science (IJRCS)*.
9. Goyal, M., & Mahmoud, Q. H. (2024). A systematic review of synthetic data generation techniques using generative AI. *Electronics*, 13(17), 3509. <https://doi.org/10.3390/electronics13173509>
10. Huang, Y., Li, Q., & Zhang, T. (2025). A systematic review of generative AI approaches for medical image enhancement: comparing GANs, Transformers, and Diffusion Models. *International Journal of Medical Informatics*, 199, 105903. <https://doi.org/10.1016/j.ijmedinf.2025.105903>
11. Zhou, X., Li, C., Wang, S., Li, Y., Tan, T., Zheng, H., & Wang, S. (2025). Generative artificial intelligence in medical imaging: foundations, progress, and clinical translation. *Preprint*. <https://arxiv.org/abs/2508.09177>
12. Seo, I., Bae, E., Jeon, J.-Y., Yoon, Y.-S., & Cha, J. (2024). The era of foundation models in medical imaging is approaching: a scoping review of the clinical value of large-scale generative AI applications in radiology. *Preprint*. <https://arxiv.org/abs/2409.12973>

13. Alshanbari, A. H., & Alzahrani, S. M. (2025). Generative AI for Diagnostic Medical Imaging: A Review. *Current Medical Imaging*, 21, <https://doi.org/10.2174/0115734056369157250212095252>
14. Tung, T., Hasnaeen, S. M. N., & Zhao, X. (2025). Ethical and practical challenges of generative AI in healthcare and proposed solutions: a survey. *Frontiers in Digital Health*, 7, 1692517. <https://doi.org/10.3389/fdgth.2025.1692517>
15. Sengar, S. S., Hasan, A. B., Kumar, S., & Carroll, F. (2025). Generative artificial intelligence: a systematic review and applications. *Multimedia Tools and Applications*, 84, 23661–23700. <https://doi.org/10.1007/s11042-024-20016-1>
16. Naser, M. Z., Tapeh, A. T. G., & Abdalla, J. (2025). A review of generative artificial intelligence in civil and environmental engineering. *Machine Learning for Computational Science and Engineering*, 1, Article 42. <https://doi.org/10.1007/s44379-025-00041-z>
17. Fauad, N., Rabbi, R. I., Benta Hasan, S., Sultana Prity, F., Ahmed, R., Ahmed, F., Hossen, M. J., Liew, T. H., Sayeed, M. S., & Ong Michael Goh, K. (2025). Generative AI in clinical (2020–2025): a mini-review of applications, emerging trends, and clinical challenges. *Frontiers in Digital Health*, 7, 1653369. <https://doi.org/10.3389/fdgth.2025.1653369>