

Rain Water Harvesting: Need of The Hour

Mr. Sainath Rajendra Sonawane¹ & Dr. Narshing Giri²

¹*Research Scholar, Pune District Education Association's, Waghire College, Post-Saswad
Tal: Purandar, Dist: Pune (Affiliated to University of Pune)*

²*Research Guide, Pune District Education Association's, Waghire College, Post-Saswad Tal:
Purandar, Dist: Pune (Affiliated to University of Pune)*

Corresponding Author – Mr. Sainath Rajendra Sonawane

DOI - 10.5281/zenodo.17906140

Abstract:

This paper discusses about the different policies and initiatives taken by the government regarding rain water harvesting and its need. The present paper is based on secondary data. The rapid rise in human population has made optimum use of fresh water imperative. Urban water supply systems in particular are under tremendous pressure to meet the needs of population as well as industry and large-scale construction. Groundwater is getting exhausted and unhygienic. Unchecked runoff is causing soil erosion. Consumption of unhygienic water is beset with health hazards. It highlights the need of rain water harvesting. There are various advantages of rain water harvesting. This paper is also explain the usefulness of rain water harvesting.

Keywords: Rain Water Harvesting, Government Policies And Initiatives, Water Scarcity, Population Growth.

Introduction:

Water is a vital natural resource essential for the sustenance of life and development of human civilization. However, in recent decades, the world has witnessed growing concern over water scarcity, primarily due to urbanisation, population explosion, deforestation, and climate change. India, with its rapidly expanding cities and increasing population, is facing acute stress on its freshwater resources. According to the Central Ground Water Board (CGWB, 2021), groundwater levels in several metropolitan areas have fallen by over 20 meters in the past two decades, leading to severe depletion and dependence on external water sources.

Rainwater harvesting (RWH) has emerged as a practical and sustainable solution to this crisis. It refers to the process of collecting and storing rainwater that falls on rooftops, paved areas, and open grounds, rather than allowing it to flow away as surface runoff. Broadly, rainwater harvesting can be classified into two major types:

- **Surface Runoff Harvesting** – It means collection of rainwater flowing over land surfaces, roads, or courtyards, and directing it into ponds, tanks, or percolation pits.
- **Rooftop Rainwater Harvesting** – It means collection of rainwater from building rooftops and channeling it

through pipes and filters into storage tanks or recharge wells.

The stored rainwater can either be used directly for domestic and agricultural purposes or be allowed to percolate into the soil to recharge groundwater aquifers. In this context, implementing rainwater harvesting is not merely an environmental necessity but also a strategic imperative for sustainable urban development and water conservation. The present study discusses the need for rainwater harvesting in urban areas and different policies and initiatives introduced and implemented by Government of India.

Rationale of Study:

Water is one of the most essential natural resources for life, yet it is increasingly becoming scarce due to environmental changes and human negligence. Over the past few decades, the balance of nature has been disturbed because of large-scale deforestation, rapid urbanisation, and industrialisation. These changes have resulted in irregular rainfall patterns, climate variability, and uneven distribution of water resources across different regions.

India, being an agrarian and rapidly developing country, is facing acute stress on its limited freshwater resources. The population growth and rising urban demands have further intensified the problem. With each passing year, the per capita availability of water in India continues to decline, leading to serious concerns over future sustainability.

Another major issue is the lack of proper water storage and management infrastructure. Many existing dams, rivers, and reservoirs are not adequately maintained, resulting in the loss of precious

rainwater through surface runoff. In urban areas, the dominance of cement roads, concrete buildings, and reduced green spaces prevent natural percolation of rainwater into the ground. Consequently, groundwater depletion has become a critical issue in cities like Pune, Bengaluru, Delhi, and Hyderabad.

The scarcity of water has thus become not just an environmental problem but also a social and economic challenge. It affects agriculture, industry, health, and the overall quality of life. To overcome these challenges, rainwater harvesting presents itself as a cost-effective and sustainable solution that can help conserve water, recharge groundwater, and reduce dependence on external water supplies. Therefore, the present study is undertaken to highlight the urgent need for rainwater harvesting, analyze its significance in urban areas about sustainable water resource management among individuals and institutions.

Literature Review:

Rainwater harvesting has emerged as an important water conservation strategy, particularly in urban areas facing rapid depletion of groundwater. Several scholars have highlighted that rainwater harvesting is one of the simplest and most effective methods to recharge declining aquifers and reduce dependency on conventional water sources. Studies emphasize its importance in addressing the growing gap between water demand and supply in cities.

Researchers also note that rapid urbanization, infrastructure development, and reduced natural infiltration have led to an alarming fall in groundwater levels. Post-1990 studies on Indian cities reveal that paved surfaces, concretization, and shrinking

green cover have significantly reduced groundwater recharge, making rainwater harvesting an urgent necessity. The literature consistently suggests that rainwater harvesting improves water security, controls runoff, and minimizes urban flooding.

The usefulness of rainwater harvesting is also highlighted in various applied research studies. According to *Gupta (2009)*, harvested rainwater can be effectively used for domestic purposes such as gardening, flushing, cleaning, and groundwater recharge, thereby reducing pressure on municipal supply.

In addition, research by *Singh (2015)* found that decentralized rainwater systems in residential areas contribute to long-term conservation by storing water at the source and reducing evaporation losses.

Government and institutional reports further reinforce the advantages of rainwater harvesting, especially in drought-prone and water-scarce regions. The Central Ground Water Board (*CGWB 2017*) reports that rainwater harvesting is not only environmentally sustainable but also economically viable, recommending its adoption in all urban development plans.

Overall, the review of literature suggests that rainwater harvesting is a practical, cost-effective, and essential strategy to restore groundwater balance and ensure sustainable water availability. It plays a major role in addressing water scarcity and supporting urban environmental management.

Objectives:

The present study has been undertaken with the following specific objectives:

- To understand the need and importance of Rainwater Harvesting in the context of increasing urbanisation, population growth, and depletion of natural water resources.
- To identify the various uses of Rainwater Harvesting for different purposes like domestic, agricultural, and industrial needs.

Methodology:

The present research paper is based purely on secondary data. The required information and data have been collected from various reliable sources such as the internet, journals, periodicals, government reports, research articles, newspapers, and reference books related to the topic. The literature review includes detailed explanations and analyses of previous studies, reports, and reviews related to rainwater harvesting and its need in present environmental and urban contexts.

Limitations of the Study:

The present study is based entirely on secondary data collected from various published and online sources. The findings and conclusions have not been supported or verified through primary data collection methods, such as surveys or questionnaires. Therefore, the results are limited to the accuracy and reliability of the available secondary information.

Discussion:

The increasing demand for fresh water resources has become one of the most serious concerns in the modern era. Rapid urbanization, industrialization, and

deforestation have placed an enormous strain on existing water supplies.

Traditional sources such as rivers, lakes, and groundwater are no longer sufficient to meet the needs of the expanding population. In this context, rainwater harvesting emerges as a vital and sustainable alternative to manage water scarcity effectively. It is a simple yet powerful technique of collecting and storing rainwater for future use, ensuring that a natural resource like rain does not go to waste.

The need for rainwater harvesting becomes even more evident in urban areas where concrete surfaces, roads, and buildings prevent rainwater from percolating into the ground. This leads to the depletion of groundwater tables and frequent water shortages.

By collecting rainwater from rooftops and open grounds, cities can reduce dependence on groundwater and municipal supplies. It also helps in mitigating the adverse effects of floods during monsoons by reducing surface runoff (CGWB 2017). In many cities, rainwater harvesting has proven to be a practical solution to restore the balance of the water cycle disturbed by urban expansion.

Another important aspect of rainwater harvesting is its contribution to groundwater recharge. When rainwater is allowed to seep into the soil through recharge pits and trenches, it replenishes underground aquifers.

This is particularly beneficial in areas where bore wells and tube wells have drastically reduced the water level. Groundwater recharge ensures the long-term availability of water, maintaining the ecological balance and providing a dependable source during dry seasons.

Thus, rainwater harvesting not only meets immediate needs but also secures the water future of the coming generations. Furthermore, rainwater harvesting has a strong environmental impact. It helps reduce soil erosion caused by uncontrolled runoff and prevents the pollution of natural water bodies.

When harvested water is used for non-potable purposes such as washing, gardening, and toilet flushing, it reduces the overall load on treated water systems. This sustainable practice aligns with the principles of environmental conservation and supports the global agenda of Sustainable Development Goal 6, which emphasizes clean water and sanitation for all.

From a social and community perspective, rainwater harvesting fosters awareness about water conservation and responsible usage. When implemented collectively in residential societies, educational institutions, and industrial areas, it creates a sense of shared responsibility toward the environment. Communities that adopt this practice become more resilient to droughts and seasonal water shortages. The active involvement of citizens ensures the success of government initiatives aimed at sustainable water management.

Economically, rainwater harvesting leads to significant cost savings. Households and institutions that adopt this system experience reduced dependence on expensive municipal water supply and private water tankers (CSE 2016). It lowers energy consumption since less water needs to be pumped from deep underground sources. In agricultural areas, it ensures crop survival during dry periods, enhancing farmers' productivity and income. Hence,

rainwater harvesting offers both environmental and financial benefits, making it a practical choice for all sectors of society.

In addition to domestic and agricultural use, rainwater has industrial applications. Many industries require large quantities of water for cleaning, cooling, and processing. Using harvested rainwater for such non-critical purposes can significantly reduce the demand for treated water. Moreover, rainwater is naturally soft and free from harmful chemicals, making it suitable for various industrial processes. Several industrial estates and educational institutions have already implemented rainwater harvesting systems, setting examples for others to follow.

The need for rainwater harvesting arises due to the continuous decline in groundwater levels and the imbalance between demand and availability of fresh water. Rapid urbanisation and infrastructure development have drastically reduced natural infiltration of rainwater into the soil. The widespread construction of concrete buildings, roads, and pavements prevents groundwater recharge, while deforestation and loss of green cover further aggravate the problem. Studies by the National Institute of Hydrology (NIH, 2020) highlight that cities such as Delhi, Pune, and Bengaluru have experienced a groundwater decline of up to 1–1.5 meters annually due to urban expansion and over-extraction.

To address these challenges, both the Government of India and various state governments have introduced policies and schemes promoting rainwater harvesting such as the Jal Shakti Abhiyan (2019), Atal Bhujal Yojana (2019), and mandatory RWH provisions under municipal development

regulations. The Bureau of Indian Standards (BIS 1172:1993) also provides technical guidelines for rainwater collection and storage systems to ensure water efficiency and sustainability.

Conclusion:

Rainwater harvesting is not merely an option but a necessity in today's world. Nature continues to perform its duty faithfully by providing rainfall at regular intervals, but human activities such as deforestation, urbanization, and overexploitation of resources have disturbed the natural balance of water availability. Therefore, it becomes our responsibility to increase water storage capacities and develop sustainable systems for water conservation. Constructing and maintaining a strong and well-planned rainwater harvesting infrastructure can help overcome the growing problem of water scarcity. If every household, institution, and community takes the initiative to implement rainwater harvesting, the future generations will be assured of sufficient and clean water resources. Thus, rainwater harvesting stands as the most practical, eco-friendly, and long-term solution for achieving water security and environmental sustainability in urban as well as in rural areas. To conclude understanding the need and uses of rainwater harvesting requires a collective effort from individuals, communities, and government bodies. Effective policy implementation, public awareness, and technological innovations can make rainwater harvesting a regular part of urban infrastructure. It is not merely an option but a necessity in ensuring water security, environmental balance, and sustainable growth (Government of India 2020). Therefore, it emphasizes the urgent

need to promote rainwater harvesting as a long-term, eco-friendly solution to the water crisis.

References:

1. Agarwal, A. & (1997). *Dying Wisdom*. New Delhi: Centre for Science and Environment (CSE).
2. Gupta, S. K. (2009). *Urban Rainwater Harvesting and Its Uses*. Environmental Management, 374-376.
3. Kumar, M. (2014). *Groundwater Depletion and Urban Challenges in India*. International Journal of Water Resources 6(2), 113-115.
4. Secretary. (2016). *Urban Rainwater Harvesting: A Handbook for Practitioners*. New Delhi: Centre for Science and Environment (CSE), New Delhi.
5. Secretary. (2017). *Artificial Recharge of Ground Water*. New Delhi: Central Ground Water Board Ministry of Jal Shakti, Government of India.
6. Secretary. (2018). *Rainwater Harvesting and Utilisation: An Environmentally Sound Approach for Sustainable Urban Water Management*. Nairobi, Kenya: United Nations Environment Programme (UNEP).
7. Secretary. (2018). *Rainwater Harvesting Techniques for Urban and Rural Areas*. Roorkee, India: National Institute of Hydrology (NIH), Roorkee, India.
8. Secretary. (2019). *India: Water Resources Management Sector Review – Initiating and Sustaining Water Sector Reforms*. Washington, D.C.: The World Bank.
9. Secretary. (2020). *Urban Groundwater Depletion and Management Strategies in India*. Roorkee: National Institute of Hydrology (NIH), Roorkee, under the Ministry of Jal Shakti.
10. Secretary. (2021). *Artificial Recharge of Ground Water*. Ministry of Jalshakti, Central Ground Water Board. Delhi: Government of India.
11. Singh, R. (2015). *Decentralized Rainwater Harvesting in Residential Areas*. Water Conservation Journal.