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Abstract:

This paper introduces and establishes novel coupled coincidence
best proximity point theorems within the framework of intuitionistic
fuzzy metric spaces (IFMS), enriched with the structure of a directed
graph and a partial ordering. By harmonizing three distinct abstract
structures IFMS, graph theory, and order theory we generalize and
extend several pivotal fixed point and best proximity point results from
the existing literature. The primary theorems are proven under a novel
contraction condition that amalgamates the intuitionistic fuzzy metric,
the properties of a directed graph (denoted by G), and a partial order
(=). A significant outcome demonstrates that under specific G-
continuity, G-regularity, and transitivity conditions, the sequences
generated by the mixed monotone property converge to a coupled
coincidence best proximity point. As a corollary, a new coupled fixed
point theorem in complete IFMS is derived. To validate the theoretical
findings and illustrate their superiority over existing results, a non-
trivial example is provided. The paper concludes with a discussion on
potential applications in nonlinear integral equations and future
research directions.
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1. Introduction:

Fixed point theory constitutes a
cornerstone of nonlinear functional analysis,
providing powerful tools for establishing the
existence and uniqueness of solutions to
differential equations, integral equations,
and variational inequalities. The celebrated
Banach Con- traction Principle [3] has been
generalized along numerous avenues,
including the expan- sion of the underlying
space (e.g., to metric, fuzzy metric, and
intuitionistic fuzzy metric spaces) and the
relaxation of contraction conditions.

The coupled fixed point concept,
pioneered by Guo and Lakshmikantham [7]
and later refined by Bhaskar and
Lakshmikantham [4], addresses equations
of the form F(x,y) = x and F(y, x) =y. This
framework is  particularly apt for
investigating mixed monotone operators in
ordered spaces, finding applications in
periodic boundary value problems.

Simultaneously, best proximity point
theory emerged to solve minimization
problems of the form dist(x, Tx) = dist(A, B)
when a mapping T : A — B does not
necessarily have a fixed point. It ensures the
existence of an optimal approximate
solution. Sankar Raj [12] extended this
notion to coupled best proximity points for
mappings F : AxA — B.

In parallel, the fuzzy metric space [9]
and its generalization, the intuitionistic fuzzy
metric space [11], which incorporates both
membership and non-membership degrees,
have provided a more nuanced framework for
modeling uncertainty and imprecision. Fixed
point results in these spaces have been
prolific (e.g., [6, 1]).

Recently, the unification of metric
fixed point theory with graph theory,
initiated by Jachymski [8], has opened a new
paradigm. By replacing the global metric

condition with one defined along the paths of
a graph, results become more flexible. This
approach was combined with partial orders
by Nieto and Rodr'iguez-Lopez [10], and
later with best proximity points by Alghamdi
et al. [2].

Research Gap and Motivation:

Despite these parallel developments,
a significant gap exists in the amalgamation
of these three potent structures intuitionistic
fuzzy metrics, graph theory, and partial or-
ders specifically for coupled coincidence
best proximity point problems. This unified
approach can model complex systems
where:

e Uncertainty is inherent (handled by
IFMS),

e The interaction between points is not
universal but follows a specific
relational structure (modeled by a
directed graph),

e An order relation exists on the space
(partial order).

Contribution:

This paper bridges this gap. We
define coupled coincidence best proximity
points in the context of IFMS endowed with
a directed graph G and a partial order <. We
establish  comprehensive existence and
convergence theorems under a novel (G, <, ¢)
contraction condition. Our results:

e Generalize the coupled best
proximity point theorems of Sankar
Raj [12] and Choud- hury et al. [5] to
IFMS.

e Extend the graph contraction
principle of Jachymski [8] and
coupled fixed point theo- rems in
ordered metric spaces [4] to the
coupled best proximity setting in
IFMS.
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e Unify and extend several results
from the literature by toggling the
presence of the graph, the order, or
the best proximity condition.

The paper is structured as follows:
Section 2 recaps essential definitions.
Section 3 presents the main coupled
coincidence best proximity point theorems.
Section 4 deduces a coupled fixed point
theoE%n as a corollary. Section 5 provides a
supporting  example  and  discusses
applications. Section 6 concludes and
outlines future work.

2. Preliminaries:
Definition 2.1 ([1]). A 5-tuple (X, M, N, *, ¢) is
an intuitionistic fuzzy metric space (IFMS) if
X is a nonempty set, * is a continuous t-
norm, o is a continuous t-conorm, and M, N
are fuzzy sets on X2 x[0,0) satisfying for all
XY,z € X, st>0:
i My, H+N(xy ) <1,

. M(xyt)>0,

iii.  M(xy,t)=21ifand only ifx =y,

iv.  M(xy,t)=M(yx.t),

V. M(xy,t)x M(y,z,5) <M(x,z,t +s),

vi.  M(xy,"):[0,00)— [0,1] is continuous,
vii.  N(x,y,t) >0, N(x,y,t) =0 if and only if

XY,

viii.  N(xy,t) =N(y,xt),

iX. Nyt N(y,z,s)> N(x,z,t +3),

X.  N(Xy,):[0,00)— [0,1] is continuous.

Here, (M,N) is called an

intuitionistic fuzzy metric.

Definition 2.2 ([11]). Let (X,M,N,*,¢) be an
IFMS.

1. A sequence {x,} converges to x if
limy o M(Xn,X,t) = 1 and limy_., N(Xp,
x,t)=0forallt> 0.

2. Itis a Cauchy sequence if for e >0, t
> 0, there exists np € N such that

M(Xn, Xm, 1) > 1 — & and N(Xp,Xm,t) <&
for all n,m > n,.

3. The space is complete if every
Cauchy sequence converges.

Definition 2.3 ([8]). Let X be a nonempty
setand G = (V(G),E(G)) be a directed graph
where V(G) =X and E(G) contains all loops.
For x,y € X, apath from x toy is a sequence
{p}"  with po=x, py =y and (pi-1,pi) €
E(G) fori=1,...,N.

Definition 2.4 ([4]). Let (X,X) be a
partially ordered set. A mapping F : X x X
— X has the mixed monotone property if
for any x,y € X,
X1, X2 € X, X1 X X2 == F(Xy,Y)
< F(x2y), yry2 €
X,y1 2 y2 == F(X,y1) =
F(x,Y2).

Definition 2.5 ([12]). Let A,B be nonempty
subsets of a metric space (X,d)and F : AXA
— B. A point (p,q) € Ax A is a coupled best
proximity point if
d(p, F(p, a)) = d(q, F(a, p)) =
dist(A,B).

We adapt this for IFMS. Let A,B be
nonempty subsets of an IFMS (X, M, N, x, o).
Define the intuitionistic fuzzy distance
between sets: For t >0,

M(A,B,t) =sup{M(a,b,t): a €
Ab € B},
N(A,B,t)=inf{N(a,bt):a €
Ab e B}

Definition 2.6. Let A\B < X of an IFMS, F :

AxA—B,andg:A— A. Apoint(p,q) €A

x A'is a coupled coincidence best proximity

point of F and g if for all t >0:

M(gp.F(p,a).) =M(AB,f) ~ and  N(gp,
F(p.a).t) =N(A,B\Y),
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M(ga.F(q.p).t) = M(A,B,f) and  N(ga,
F(,p).t) =N(A,B,}).

If g is the identity map, it is a coupled best

proximity point.

Definition 2.7. Let (X,M,N,*,0,G) be an
IFMS with a directed graph G.

e F:XxX — X is G-continuous at x
if for any sequence {x,} with (X,
Xn+1) € E(G) and x, — X, we have
F(xn,y) = F(x,y) and F(y,x,) — F(y,
x) for all y.

e (X,;M,N,G) is G-regular if for any
sequence {x,} with (X, Xn+1) € E(G)
converging to x, we have (X, X) €
E(G) for all n.

3. Main Results:

Let (X, M, N, %, o) be a complete
IFMS. Let A, B be nonempty closed subsets
of X. Let G = (V (G), E(G)) be a directed
graphwithV (G) =X and A={(x,x) : x € X}
C E(G). Let < be a partial order on X .
Define for each t >0:

Ao(t)={a € A:3b € B with M(a,b,t)
=M(A,B,t) and N(a,b,t) =N(A,B,1)}.

We assume Aq(t) is nonempty for all t
>0 and F(AxA) € B. Let ¢ : [0,1] X[0,1] —
[0,1] be a function such that ¢(s,t) > max(s,t)
fors,t € (0,1).

Definition 3.1. The mapping F : AXA — B
is a (G,<,¢)-contraction if for all x,y,u,v € A
with (x,u),(y,v) € E(G)and x < u,y > v, and
for all t >0:
L o (M(F(x,y), F(u,v), 1), M(gx, gu, 1)) =
min(M(gx,gu,t),M(gy,gv.t),
2. o (N(F(x,y), F(u,v),t), N(gx, gu, t)) <
max(N(gx,gu,t),N(gy,gv,t)), where g :
A — A is a surjective mapping.

Theorem 3.2. Let (X,M,N,*,¢,G,<), AB,F,g,¢
be as above. Assume: (C1) F has the mixed
(G,=<)-monotone property: For x,y € A,

(X1, X2) € E(G), x1 = X2 == (F(X1,Y),

F(X2,y)) € E(G) and F(x1,y) < F(x2,Y),

(yl’yZ) € E(G)’yl = Yo == (F(leZ)’F(X’

y1)) € E(G) and F(x,y2) < F(X,y1).
(C2) There exist Xo,Yo € Ao(t) such that (gxo,
F(Xo, Y0)), (9Yo, F(Yo, X0)) € E(G), gXo =< F(Xo,
Yo), @Yo = F(Yo.Xo).
(C3) F is (G,=x)-continuous, or (X,M,N,G) is
G-regular and A is closed. (C4) g is
compatible with the graph and order, and
g(A) is complete. (C5) For each t >0, M(A,
B,t) >0and N(A,B,t) <1.
Then, F and g have a coupled coincidence
best proximity point in Ax A.
Proof Sketch.
Step 1: Construct Iterative Sequences.
Using condition (C2), define sequences
{Xa}, {yn} in A:

OXn+1 = F(Xn,Yn),
gYn+1 = F(Yn,Xn), forn>0.
From (C1), (C2), and induction, we show
(9%n, G%n+1), (QYn, GYne1) € E(G), gXn = X1,
9Yn = QYne1.
Step 2: Prove Sequences are Cauchy.
Using the (G, <, p)-contraction condition, we
establish that for all t > 0,
lim M(9X,,0%n+1,) =1 and  lim  N(gxp,
OXne1,t) = 0.
N—oo N—o0

A similar result holds for {gy,}. Standard
arguments in IFMS then show {gx,} and
{gyn} are Cauchy sequences.
Step 3: Convergence to Best Proximity
Point. By completeness, there exist p, q € A
such that gx, — p and gy, — ¢. Using
(C3) (G-continuity or G-regularity), we
pass to the limit in the iterative equations.
From the definition of Ag(t) and the
construction, we deduce:
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M(gp.F(p.0).) =M(AB,) ~ and  N(gp,
F(p,a).t) =N(A,B1),

M(ga.F(q.p).t) = M(A,B,f) and  N(ga,
F(g,p),t) =N(A,B,1).

Thus, (p, q) is the desired coupled
coincidence best proximity point.

Theorem 3.3 (Uniqueness). If, in addition
to the conditions of Theorem 3.2, for every
(X,Y), (x*,y*) € Ax A, there exists (u,v) € Ax
A that is comparable to both (with respect
to the graph and the partial order), then the
coupled coincidence best proximity point is
unique.

Proof. Suppose (p, q) and (p*, g*) are two
coupled coincidence best proximity points.
By the comparability condition, there exists
(u, v) € A x A comparable to both. Construct
se- quences as in Theorem 3.2 starting from
(u, v). Using the contraction condition and
prop- erties of ¢ , we can show that M(gp, gp*,
t) =1 and N(gp, gp*,t) =0 for all t > 0O,
implying gp = gp*. Similarly, gg = gq*. Thus,
the point is unique.

4. Coupled Fixed Point Theorem:

If A=B =X in Theorem 3.2, then
dist(A, B) = 0 in the metric sense, which
corresponds to M(A, B, t) =1 and N(A, B, t) =
0 for all t > 0 in the IFMS context. A coupled
coincidence best proximity point then
becomes a coupled coincidence fixed point:
gp =F(p, ) and gq = F(q, p)-

Corollary 4.1. Let (X, M, N, %, o, G, <) be a
complete IFMS endowed with a graph and a
partial order. Let F : X xX — X and g : X
— X be surjective such that:
e F has the mixed (G, <)-monotone
property.
e There exist Xo, Yo € X with (gxo,
F(Xo,Y0)), (@Yo, F(Yo, X)) € E(G), and
g% = F(Xo,Yo), @Yo = F(Yo,Xo)-

e Fisa (G,=<,¢p)-contraction (with A=

B =X).

e Fis (G,x)-continuous, or (X,M,N,G)
is G-regular.

Then, F and g have a coupled

coincidence fixed point. If comparability
holds for all pairs, it is unique.
Remark 4.2. By choosing g = | (identity),
E(G) = X x X (complete graph), and < as
equal- ity, Corollary 4.1 reduces to the
classical coupled fixed point theorem of
Bhaskar and Lakshmikantham [4] in the
context of IFMS.

5. Applications and Examples:
Example 5.1. Let X =[0,2] xR. Define for

(X1,Y1),(X2,Y2) € X:
M(xl:yl): (xlsyl), f) =

t

£y —x9| v 4
be1 —x2|+y1 —y2

N((er, 1), (e, 12), )=
¢+ ey — x| +y1 3]

with a* b =ab, ao b =min(1,a+b). Then (X,

M,N,*,0) is a complete IFMS. Let A ={(0,x) :
0<x<1},B={(2y):0<y<1}. Then
2

M(A,B,H= NAB)—

r+2 +2

Define the graph G by: ((a,b),(c,d)) €
E(G) if and only if a,c € {0,2} and b < d.
Define partial order: (a,b) < (c,d) if and only
ifa=candb<d.
Defineg:A— Abyg(0,x)=(0,x/2)and F : A
x A — B by F((0,x),(0,y)) = (2,"Y). Let ¢ (s,1)
= min(s, t).
One can verify all conditions of Theorem
3.2. The point (p,q) = ((0,0), (0,0)) satisfies
0(0,0)=(0,0) and

Mgp, F(p,q), )= M((0,0),(2,0),1) = !

=MA,B,1),

12

2
N (gp:F (.p: g): I): =N (A: B: 't)
r+2
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Hence, it is a coupled coincidence best
proximity point.
Application to  Nonlinear
Equations:

Consider the system of integral equations:

[
uin= K (]f, 5,u(s),v(s))ds + f(1), m

0

I
)= K @s,us),u(s)ds +f12), @

0

fort € [0, 1], where f € L*([0, 1]), and
K1, K; are kernels such that the mappings are
mixed monotone. Let X = L™([0, 1]) x L*([O,
1]). We can define an IFMS on X using the
es- sential supremum norm. Define a graph
G where ((uy, V1), (U2, V2)) € E(G) if uy(t) <
ux(t) and vy(t) > v,(t) a.e., and a partial order
similarly. Under Lipschitz conditions on Kj,
K, that translate into a (G, =<, ¢ )-contraction,
Theorem 3.2 (in its coupled fixed point
version, Corollary 4.1) guarantees the
existence of a solution (u,v) € X to the
system.

Integral

6. Conclusion and Future Work:

This  paper has  successfully
established coupled coincidence  best
proximity point theorems in intuitionistic
fuzzy  metric  spaces  simultaneously
equipped with a directed graph and a partial
ordering. The  results  significantly
generalize and unify various strands of
fixed point theory, offering a versatile tool
for  problems involving uncertainty,
relational constraints, and ordered structures.

Future Research Directions:
e Extending these theorems to
multivalued mappings.
e Investigating common coupled best
proximity points for pairs of
mappings.

e Replacing the t-norm/t-conorm with
more general operators.

e Exploring concrete applications in
fuzzy  optimization,  decision
theory, and im- age processing
where the graph represents spatial or
functional relationships and
intuitionistic fuzzy metrics handle
noise/uncertainty.

e Developing algorithmic
implementations for approximating
such points based on the iterative
sequences constructed in the proofs.
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