

International Journal of Advance and Applied Research
www.ijaar.co.in

ISSN – 2347-7075 Impact Factor – 7.328
Peer Reviewed Bi-Monthly

 Vol.9 No.6 July – Aug 2022

456

 AN ANALYSIS OF ROBOTIC OPERATING SYSTEMS (ROS

2) IN REAL-TIME SYSTEMS

S. Parthiban

Student (UG), Robotics and Automation, Karunya Institute of Technology and

Sciences (KITS), Coimbatore, Tamil Nadu Pin: 6411001

Corresponding Author- S. Parthiban

E mail: parthibans.work@gmail.com

 DOI- 10.5281/zenodo.7071055

Abstract

In the Contemporary world, the most advanced Industrial Robots and

autonomous vehicles perform under rehearsal-time real systems. Robot Operating System

(ROS) has developed an opensource lib library it contains a tool that aids the building of

robot applications. The Primary version of ROS had not met real-time constraints as

expected a newer version of ROS is developed, called ROS 2. But still ROS 2 has

shortcomings in the real-time analysis as it is still in the development stage. This paper

aims to analyze the Real-time performance of ROS 2 and also aims to identify the

problems and solutions regarding the real-time constraints of the Robot Operating

System (ROS 2). On the whole, it demonstrates the research on the real-time performance

of ROS 2 for the improvement of robotic applications.

Rationale of the Study:

In recent years, industrial robots,

autonomous vehicles, process systems,

path control, air traffic control systems,

and the applications of ROS became

diverse, the necessity of the high-tech

device is expanding every day and real-

time analysis are common

characteristics such as reliability and

time predictability. The application of

ROS for example is that the mobile

robot should detect the obstacle, make a

decision to move, and also it should

react in a certain amount of time and

should provide the required results for

the user. These are very common in the

robotic field and it usually requires high

real-time analytical capabilities.

Robot Operating System (ROS)

was developed as a framework composes

of open-source software libraries and

tools that help roboticists to construct

robots for various applications. Since the

original version of ROS does not support

priority and synchronization for tasks

for the real-time systems and there is no

efficient approach for the real-time

approach, so the efficiency for the real-

time applications is low for the robot.

These shortcomings made the efficiency

of the ROS very low in the real-time

field so it was upgraded as ROS 2 which

has been maintained by Willo George

and The Open-Source Robotics

Foundation (OSRF) also they have

included the use of DSS communication

service in ROS 2 for the real-time

systems.

Objective of the Study:

The core objective of this paper is to

analyze the Robot Operating System

(ROS 2) in the real-time field by

identifying the issues and their

solutions for its betterment when

compared to the Primary Version of

ROS 1.

Hypothesis:

The main feature which can

distinguish the ROS 2 from its primary

version is its real-time performance

when compared to the ROS and for

considering the real-time performance

these characteristics have critical

IJAAR Vol.9 No.6 ISSN – 2347-7075

S. Parthiban

457

support performance according to

Buttazzo.

Predictability:
It is to satisfy the operation of real-time

systems at the desired level and the

desired system should predict the

results for any of the decisions made.

Efficiency:
Since most real-time systems are

embedded systems limited in weight,

energy consumption, and computational

power the management of these

resources depicts the efficiency of a real-

time system.

Robustness:
The system should not continue to work

in high workload conditions hence it

should be designed to be able to manage

the huge computational loads and also

adaptation to different conditions are

essential.

Maintainability:
The Architecture of the system should

be designed while considering the

modularity features to make the system

more approachable and easier to

maintain for the user

These characteristics play an important

role in the real-time applications of the

ROS and ROS 2 and ROS 2 has a better

efficiency when compared to the ROS

because of the following:

ROS 2 Architecture:

When compared to the primary

version of the ROS, ROS 2 is connected

to multiple layers and these layers

support many libraries which are

supported by the programming

languages such as C++ and python. The

ROS Client library (RCL) helps to

provide consistency with the help of the

APIs. The architecture is shown below:

Figure:1- Architecture of ROS1 and ROS2

Multiple nodes in the same

executable:

ROS1 a node is too tight to an

executable and in ROS1 these are

rectified by the addition of the Nodelets

but in ROS 2 core it is called the

“Components” so here the user can

handle as many as nodes from the same

executable using components and a

component is simply a modified node

class.

Services:

In ROS1 the services are

synchronous such that when the service

client calls a request to the server it is

stuck until the server responds but in

ROS2 they are asynchronous which

makes them more reliable than ROS1.

IJAAR Vol.9 No.6 ISSN – 2347-7075

S. Parthiban

458

Figure:2- ROS2 Message Communication

CPP and Python Packages:

In ROS1 the packages are

created then we need to add any

CPP/python file that we want but here

in ROS2 we have to specify

ament_cmake or ament_python while

creating a specific CPP or python

package.

Workspace:

Sourcing the environment or workspace

is still the same between ROS1 and

ROS2 but here in ROS2 it brings a new

concept of overlays hence it allows the

user to have multiple workspaces on top

of the each other. This will come in

handy when the user has to create or

develop an application and have a

certain number of packages but have to

create an overlay for just one package

and it allows the quick Iteration of the

process.

OS Support:

ROS1 mainly supported the Ubuntu

platform and it made it difficult for

many users as they have to learn a new

OS from their well-known OS, but with

a new Architecture the ROS2 will be

supported even in Ubuntu, macOS, and

Windows 10+ which makes it more

accessible and embeddable in many

robotic applications.

Table:1- ROS1 and ROS2 Timeline

Sl.No. Years ROS Versions

1. 2019-2021 ROS1 Kinetic

2. 2019-2023 ROS1 Melodic

3. 2020-2025 ROS1 Noetic

4. 2020-2021 ROS2 Dashing

5. 2021-2023 ROS2 Foxy

6. 2022-2026 ROS2 H

Source: ROS Survey by OSRF

The Above table provides the

data of which versions of the ROS have

been used by the users in the following

years and here we can see that there is a

decrement in ROS1 usage and more

people are preferring fOS2. One of the

main reasons which assist the above

statement is that ROS1 Noetic will

cease to function in the year 2025 as

mentioned by Willo George and ROS

Foundation that all the operations can’t

be further provided or done in the ROS1

Noetic version.So many of the user’s

eyes are focused on the ROS2 Foxy since

it has more predictability, and reliability

when compared to the Noetic version

but still, there are some shortcomings

too for the ROS2 Foxy.

Problems of ROS2:

ROS2 is welcomed by everyone

but still, the major problem with ROS2

is that the stability of the platform as

IJAAR Vol.9 No.6 ISSN – 2347-7075

S. Parthiban

459

ROS1 is more stable than that many of

the users are still using ROS1 more

than ROS2 The other major one is that

many of the users are still in the

Learning Phase of ROS2 as it has many

changes when compared to its parent’s

version The Sources for learning or the

libraries for ROS2 are still lacking so it

makes the learning process difficult and

slower, also many found that it is

difficult to switch from ROS1 to ROS2

Solution:

The OSRF provided new nodes which

allow the user to easily understand the

ROS2 features and also, they are

providing the ros1_bridge package

which allows the user to use the ROS1

and ROS2 together Even though it is

possible but they are not directly

compatible and some adaptations we

required between them and ros1_bridge

provide or acts as a bridge between the

ROS1 and ROS2

Real-Time Analysis features:

Finally, the real-time analysis of

latency of ROS2 when compared with

the ROS1 is depicted below in the graph:

Graph:1- ROS1 and ROS2 latency

The above graph shows the ROS1

and ROS2 latency features as we can

see that ROS1 has more latency when

compared to that ROS2 since its

architecture has no support over

multiple layers and nodes at a time.

Research Methodology:

This study is analytical and the

data sources have been collected from

various sources like papers, Journals,

Databases, and National and

International Publications.

Furthermore, the analysis is conducted

accurately with a well-defined

methodology as this research

summarised the problems and provided

analytical solutions to the problems

identified.

Conclusion:

This paper presents a study of

analysing the real-time performance of

ROS2. This work identifies the key

features and applications of ROS2 in the

field of robotics which helps to hinder

the gap between robotics and humans. It

also identifies the problems regarding

ROS2 and also provides an analytical

solution to the problem from the aspect.

It also compares the Robot Operating

System 2 with its predecessor ROS1 and

also with its other versions and provides

a review about which is the best for the

users for the upcoming periods.

In Summary, ROS2 is an open-

source robot operating system that helps

in various applications such as path

planning, autonomous navigation, and

self-mapping process for mobile robots.

Further directions of this work would

include the fabrication, large data, a

detailed review, and ever more analysis

of the ROS2. Through this paper, I

IJAAR Vol.9 No.6 ISSN – 2347-7075

S. Parthiban

460

intend to inspire to aspiring robotic

engineers, roboticists who are interested

in the field of ROS2 operating systems,

and researchers who review this field for

more improvisations in the field of

robotics and take it to broader aspects in

the future directions.

References:

1. Buttazzo, G.C., Hard real-time

computing systems: predictable

scheduling algorithms and

applications. Vol. 24. 2011: Springer

Science & Business Media.

2. Mubeen, S., E. Lisova and A.

Vulgarakis Feljan, Timing

predictability and security in safety-

critical industrial cyber-physical

systems: A position paper. Applied

Sciences, 2020. 10(9): p. 3125.

3. Kay, J. and A.R. Tsouroukdissian,

Real-time control in ROS and ROS

2.0. ROSCon15, 2015.

4. Maruyama, Y., S. Kato and T.

Azumi. Exploring the performance of

ROS2. in Proceedings of the 13th

International Conference on

Embedded Software. 2016.

5. DiLuoffo, V., W.R. Michalson and B.

Sunar, Robot Operating System 2:

The need for a holistic security

approach to robotic architectures.

International Journal of Advanced

Robotic Systems, 2018. 15(3): p.

1729881418770011

6. Barut, S., M. Boneberger, P.

Mohammadi and J.J. Steil.

Benchmarking Real-Time

Capabilities of ROS 2 and OROCOS

for Robotics Applications. in 2021

IEEE International Conference on

Robotics and Automation (ICRA).

2021. IEEE.

7. Blaß, T., D. Casini, S. Bozhko and

B.B. Brandenburg. A ROS 2

Response-Time Analysis Exploiting

Starvation Freedom and Execution-

Time Variance. in 2021 IEEE Real-

Time Systems Symposium (RTSS).

2021. IEEE

8. Ye, Y., P. Li, Z. Li, F. Xie, X.-J. Liu

and J. Liu. Real-Time Design Based

on PREEMPT_RT and Timing

Analysis of Collaborative Robot

Control System. in International

Conference on Intelligent Robotics

and Applications. 2021. Springer

